Citation: | WU Xu, HOU Xianhua. The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006 |
[1] |
GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy and Environmental Science, 2014, 7(1): 14-18. doi: 10.1039/C3EE42613K
|
[2] |
THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy and Environmental Science, 2012, 5(7): 7854-7863. doi: 10.1039/c2ee21892e
|
[3] |
BA LAKRISHNAN P G, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. doi: 10.1016/j.jpowsour.2005.12.002
|
[4] |
XIN S, YOU Y, WANG S, et al. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects[J]. ACS Energy Letters, 2017, 2(6): 1385-1394. doi: 10.1021/acsenergylett.7b00175
|
[5] |
KANG Y, LEE W, DONG H S, et al. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical pro- perties[J]. Journal of Power Sources, 2003, 119(7): 448-453.
|
[6] |
JUNG K N, LEE J I, JUNG J H, et al. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid[J]. Chemical Communications, 2014, 50(41): 5458-5461. doi: 10.1039/c4cc01243g
|
[7] |
ZHU X, WANG K, XU Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36(2): 291-308.
|
[8] |
张崧, 王玉海, 石光, 等. 细菌纤维素/TiO2锂离子电池复合隔膜的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091
ZHANG S, WANG Y H, SHI G, et al. Study on bacterial cellulose/TiO2 composite separators for lithium-ion batteries[J]. Journal of South China normal University(Na-tural Science Edition), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091
|
[9] |
LUO J, FANG C C, WU N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018, 8(2): 1701482/1-7.
|
[10] |
SHEN L G, FENG S S, LI J X, et al. Surface modification of polyvinylidene fluoride(PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance[J]. Scientific Reports, 2017, 7(1): 2721/1-13.
|
[11] |
MUKHOPADHYAY N, PANWAR A S, KUMAR G, et al. Influence of non-covalent modification of multiwalled carbon nanotubes on the crystallization behaviour of binary blends of polypropylene and polyamide 6[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4293-4310. doi: 10.1039/C4CP05060F
|
[12] |
JUNG J W, LEE C L, YU S, et al. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review[J]. Journal of Materials Chemistry A, 2016, 4(3): 703-750. doi: 10.1039/C5TA06844D
|
[13] |
PENG S J, JIN G R, LI L L, et al. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment[J]. Chemical Society Reviews, 2016, 45(5): 1225-1241. doi: 10.1039/C5CS00777A
|
[14] |
FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. doi: 10.1016/j.jpowsour.2010.01.076
|
[15] |
LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29(13): 1604460/1-13.
|
[16] |
胡社军, 张苗, 侯贤华, 等. 高容量型锂离子电池硅基负极材料的研究[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241
HU S J, ZHANG M, HOU X H, et al. Research advances in silicon-based anode materials of high capacity lithium-ion battery[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241
|
[17] |
KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. doi: 10.1021/ja502133j
|
1. |
王万慧,王春娟,胡骥. 构筑星形化合物提升交联网络固态聚合物电解质性能. 华南师范大学学报(自然科学版). 2024(02): 25-31 .
![]() | |
2. |
王万慧,周扬,胡骥. 刚柔并济聚氨酯基固态聚合物电解质. 华南师范大学学报(自然科学版). 2023(04): 36-41 .
![]() | |
3. |
张玉坤. 有机硅在锂离子电池电解质中的应用研究. 分布式能源. 2022(03): 78-84 .
![]() |