• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WU Xu, HOU Xianhua. The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006
Citation: WU Xu, HOU Xianhua. The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. DOI: 10.6054/j.jscnun.2022006

The Gel Polymer Electrolyte Based on Nylon 6 and Polyvinylidene Fluoride Membrane

More Information
  • Received Date: April 20, 2021
  • Available Online: March 13, 2022
  • The Nylon 6 (PA6)/Polyvinylidene fluoride (PVDF)/Nylon 6 (PA6) three-layer composite membrane with a sandwich structure for gel polymer electrolyte is prepared by continuous electrospinning. Scanning electron microscopy (SEM) showed that the membrane is composed of disordered nanofibers interwoven with each other, with a large number of interpenetrating 3D channels. The thermal stability of the diaphragm is analyzed with differential scanning calorimetry (DSC). The special porous sandwich structure and the combination of the two materials can effectively improve the safety of the lithium ion battery. Gel polymer electrolyte (GPE) is obtained by absorbing a small amount of lithium hexafluorophosphate electrolyte (1 mol/L LiPF6 solution, ethylene carbonate(EC)/dimethyl carbonate(DMC)/ethyl methyl carbonate(EMC), 1∶1∶1 for mass ratio) with a composite membrane. The ionic conductivity of the electrolyte reaches 4.2 mS/cm at room temperature, and the interfacial dynamic stability between the electrolyte and the electrode is good. In order to study the practicability of gel polymer electrolyte, a button battery is assembled with lithium sheet anode and commercial lithium iron phosphate cathode material. The battery shows good cycling and rate performance.
  • [1]
    GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy and Environmental Science, 2014, 7(1): 14-18. doi: 10.1039/C3EE42613K
    [2]
    THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy and Environmental Science, 2012, 5(7): 7854-7863. doi: 10.1039/c2ee21892e
    [3]
    BA LAKRISHNAN P G, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. doi: 10.1016/j.jpowsour.2005.12.002
    [4]
    XIN S, YOU Y, WANG S, et al. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects[J]. ACS Energy Letters, 2017, 2(6): 1385-1394. doi: 10.1021/acsenergylett.7b00175
    [5]
    KANG Y, LEE W, DONG H S, et al. Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical pro- perties[J]. Journal of Power Sources, 2003, 119(7): 448-453.
    [6]
    JUNG K N, LEE J I, JUNG J H, et al. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid[J]. Chemical Communications, 2014, 50(41): 5458-5461. doi: 10.1039/c4cc01243g
    [7]
    ZHU X, WANG K, XU Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36(2): 291-308.
    [8]
    张崧, 王玉海, 石光, 等. 细菌纤维素/TiO2锂离子电池复合隔膜的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091

    ZHANG S, WANG Y H, SHI G, et al. Study on bacterial cellulose/TiO2 composite separators for lithium-ion batteries[J]. Journal of South China normal University(Na-tural Science Edition), 2017, 49(2): 21-27. doi: 10.6054/j.jscnun.2017091
    [9]
    LUO J, FANG C C, WU N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018, 8(2): 1701482/1-7.
    [10]
    SHEN L G, FENG S S, LI J X, et al. Surface modification of polyvinylidene fluoride(PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance[J]. Scientific Reports, 2017, 7(1): 2721/1-13.
    [11]
    MUKHOPADHYAY N, PANWAR A S, KUMAR G, et al. Influence of non-covalent modification of multiwalled carbon nanotubes on the crystallization behaviour of binary blends of polypropylene and polyamide 6[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4293-4310. doi: 10.1039/C4CP05060F
    [12]
    JUNG J W, LEE C L, YU S, et al. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review[J]. Journal of Materials Chemistry A, 2016, 4(3): 703-750. doi: 10.1039/C5TA06844D
    [13]
    PENG S J, JIN G R, LI L L, et al. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment[J]. Chemical Society Reviews, 2016, 45(5): 1225-1241. doi: 10.1039/C5CS00777A
    [14]
    FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. doi: 10.1016/j.jpowsour.2010.01.076
    [15]
    LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, 29(13): 1604460/1-13.
    [16]
    胡社军, 张苗, 侯贤华, 等. 高容量型锂离子电池硅基负极材料的研究[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241

    HU S J, ZHANG M, HOU X H, et al. Research advances in silicon-based anode materials of high capacity lithium-ion battery[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(6): 69-74. http://journal-n.scnu.edu.cn/article/id/3241
    [17]
    KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. doi: 10.1021/ja502133j
  • Cited by

    Periodical cited type(3)

    1. 王万慧,王春娟,胡骥. 构筑星形化合物提升交联网络固态聚合物电解质性能. 华南师范大学学报(自然科学版). 2024(02): 25-31 .
    2. 王万慧,周扬,胡骥. 刚柔并济聚氨酯基固态聚合物电解质. 华南师范大学学报(自然科学版). 2023(04): 36-41 .
    3. 张玉坤. 有机硅在锂离子电池电解质中的应用研究. 分布式能源. 2022(03): 78-84 .

    Other cited types(0)

Catalog

    Article views (340) PDF downloads (94) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return