• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZENG Tiaoying. The Sensitivity Under Directed Partial Semigroup Actions[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 105-110. DOI: 10.6054/j.jscnun.2021099
Citation: ZENG Tiaoying. The Sensitivity Under Directed Partial Semigroup Actions[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 105-110. DOI: 10.6054/j.jscnun.2021099

The Sensitivity Under Directed Partial Semigroup Actions

More Information
  • Received Date: March 14, 2021
  • Available Online: January 09, 2022
  • The sensitivity and n-sensitivity are studied under directed partial semigroup actions, and some results about them are obtained. First, for an abelian Λ-topological dynamical system (X, {Tλ}λΛ) on compact metric space (X, d), if it is a transitive C-system, then it is almost equicontinuous if and only if it is non-sensitive. Se-cond, if (X, {Tλ}λΛ)is a Λ-topological dynamical system and X is a locally connected space, then (X, {Tλ}λΛ)is sensitive if and only if it is n-sensitive for every n≥2.
  • [1]
    LI T Y, YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992. doi: 10.1080/00029890.1975.11994008
    [2]
    熊金城. 拓扑传递系统中的混沌[J]. 中国科学: A辑, 2005, 48(7): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200503006.htm

    XIONG J C. Chaos in topological transitive systems[J]. Science in China: Series A, 2005, 48(7): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200503006.htm
    [3]
    张瑞丰. 动力系统初值敏感性、序列熵及相关问题的研究[D]. 合肥: 中国科学技术大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10358-2008091571.htm

    ZHANG R F. Study on initial sensitivity, sequence entropy and related problems of dynamics[D]. Hefei: University of Science and Technology of China, 2008. http://cdmd.cnki.com.cn/article/cdmd-10358-2008091571.htm
    [4]
    YE X D, ZHANG R F. On sensitive sets in topological dynamics[J]. Nonlinearity, 2008, 21(7): 1601-1620. doi: 10.1088/0951-7715/21/7/012
    [5]
    EDUARD K, MICHAEL M. A note on sensitivity of semi-group actions[J]. Semigroup Forum, 2008, 76: 133-141. doi: 10.1007/s00233-007-9033-5
    [6]
    IGLESIAS J, PORTELA A. Almost open semigroup actions[J]. Semigroup Forum, 2019, 98: 261-270. doi: 10.1007/s00233-018-9936-3
    [7]
    LI J, YU T, ZENG T Y. Dynamics on sensitive and equicontinuous functions[J]. Topological Methods in Nonli-near Analysis, 2018, 51(2): 545-563. https://apcz.umk.pl/TMNA/article/view/TMNA.2017.054
    [8]
    WANG H Y. Thickly syndetic sensitivity of semigroup actions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(4): 1125-1135. http://bkms.kms.or.kr/submission/Source/Download.php?FileDir=/201707/170770&FileName=B170622AOP.pdf
    [9]
    RYBAK O V. Li-Yorke sensitivity for semigroup actions[J]. Ukrainian Mathematical Journal, 2013, 65: 752-759. doi: 10.1007/s11253-013-0811-9
    [10]
    FARMAKI V, KARAGEORGOS D, KOUTSOGIANNIS A. Topological dynamics on nets[J]. Topology and its Applications, 2016, 201: 414-431. doi: 10.1016/j.topol.2015.12.051
    [11]
    FURSTENBERG H, WEISS B. Topological dynamics and combinatorial number theory[J]. Journal d'Analyse Mathé-matique, 1978, 34: 61-85. doi: 10.1007/BF02790008
    [12]
    FARMAKI V, KOUTSOGIANNIS A. Topological dynamics indexed by words[J]. Topology and its Applications, 2012, 159(7): 1678-1690. doi: 10.1016/j.topol.2011.05.041
    [13]
    FARMAKI V, KARAGEORGOS D, KOUTSOGIANNIS A. Abstract topological Ramsey theory for nets[J]. Topology and its Applications, 2016, 201: 314-329. doi: 10.1016/j.topol.2015.12.043
    [14]
    DEVANEY R L. An introduction to chaotic dynamical systems[M]. 2nd ed. Redwood: Addison-Wesley Publishing Company, 1989.
    [15]
    熊金城. 点集拓扑讲义[M]. 北京: 高等教育出版社, 2020.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (383) PDF downloads (41) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return