Citation: | ZENG Tiaoying. The Sensitivity Under Directed Partial Semigroup Actions[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 105-110. DOI: 10.6054/j.jscnun.2021099 |
[1] |
LI T Y, YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992. doi: 10.1080/00029890.1975.11994008
|
[2] |
熊金城. 拓扑传递系统中的混沌[J]. 中国科学: A辑, 2005, 48(7): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200503006.htm
XIONG J C. Chaos in topological transitive systems[J]. Science in China: Series A, 2005, 48(7): 929-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200503006.htm
|
[3] |
张瑞丰. 动力系统初值敏感性、序列熵及相关问题的研究[D]. 合肥: 中国科学技术大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10358-2008091571.htm
ZHANG R F. Study on initial sensitivity, sequence entropy and related problems of dynamics[D]. Hefei: University of Science and Technology of China, 2008. http://cdmd.cnki.com.cn/article/cdmd-10358-2008091571.htm
|
[4] |
YE X D, ZHANG R F. On sensitive sets in topological dynamics[J]. Nonlinearity, 2008, 21(7): 1601-1620. doi: 10.1088/0951-7715/21/7/012
|
[5] |
EDUARD K, MICHAEL M. A note on sensitivity of semi-group actions[J]. Semigroup Forum, 2008, 76: 133-141. doi: 10.1007/s00233-007-9033-5
|
[6] |
IGLESIAS J, PORTELA A. Almost open semigroup actions[J]. Semigroup Forum, 2019, 98: 261-270. doi: 10.1007/s00233-018-9936-3
|
[7] |
LI J, YU T, ZENG T Y. Dynamics on sensitive and equicontinuous functions[J]. Topological Methods in Nonli-near Analysis, 2018, 51(2): 545-563. https://apcz.umk.pl/TMNA/article/view/TMNA.2017.054
|
[8] |
WANG H Y. Thickly syndetic sensitivity of semigroup actions[J]. Bulletin of the Korean Mathematical Society, 2018, 55(4): 1125-1135. http://bkms.kms.or.kr/submission/Source/Download.php?FileDir=/201707/170770&FileName=B170622AOP.pdf
|
[9] |
RYBAK O V. Li-Yorke sensitivity for semigroup actions[J]. Ukrainian Mathematical Journal, 2013, 65: 752-759. doi: 10.1007/s11253-013-0811-9
|
[10] |
FARMAKI V, KARAGEORGOS D, KOUTSOGIANNIS A. Topological dynamics on nets[J]. Topology and its Applications, 2016, 201: 414-431. doi: 10.1016/j.topol.2015.12.051
|
[11] |
FURSTENBERG H, WEISS B. Topological dynamics and combinatorial number theory[J]. Journal d'Analyse Mathé-matique, 1978, 34: 61-85. doi: 10.1007/BF02790008
|
[12] |
FARMAKI V, KOUTSOGIANNIS A. Topological dynamics indexed by words[J]. Topology and its Applications, 2012, 159(7): 1678-1690. doi: 10.1016/j.topol.2011.05.041
|
[13] |
FARMAKI V, KARAGEORGOS D, KOUTSOGIANNIS A. Abstract topological Ramsey theory for nets[J]. Topology and its Applications, 2016, 201: 314-329. doi: 10.1016/j.topol.2015.12.043
|
[14] |
DEVANEY R L. An introduction to chaotic dynamical systems[M]. 2nd ed. Redwood: Addison-Wesley Publishing Company, 1989.
|
[15] |
熊金城. 点集拓扑讲义[M]. 北京: 高等教育出版社, 2020.
|