• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Jie, LI Chaolin, CHEN Gang, JI Fei, SHEN Yiyong, PENG Juan. The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 28-33. DOI: 10.6054/j.jscnun.2021089
Citation: ZHAO Jie, LI Chaolin, CHEN Gang, JI Fei, SHEN Yiyong, PENG Juan. The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 28-33. DOI: 10.6054/j.jscnun.2021089

The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance

More Information
  • Received Date: July 04, 2021
  • Available Online: January 09, 2022
  • The porous MXene composite material (Ti3C2Tx/SnSe) was fabricated with the in-situ oxidation-etching method and the hydrothermal synthesis technology. The composition, structure and electrochemical properties of the prepared materials were evaluated. The research results showed that the porous Ti3C2Tx/SnSe electrode deliveed a capacity of 381.5 mA ·h/g at a current density of 0.05 A/g while the specific capacity of the pure SnSe electrode was only 119.2 mA ·h/g. At a current density of 1 A/g, the Ti3C2Tx/SnSe electrode showed an initial reversible specific capacity of 118.5 mA ·h/g and it remained at 35.4 mA ·h/g after 500 cycles. The excellent electrochemical performance of the porous Ti3C2Tx/SnSe electrode material mainly benefits from the high conductivity of Ti3C2Tx, which not only alleviates the volume expansion of SnSe but also provides a good path for the ionic transfer.
  • [1]
    杨稳稳, 周玉林, 王梦月, 等. 天然石墨表面自组装SnO2-FeO(OH)高容量锂离子电池负极[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 29-34. doi: 10.6054/j.jscnun.2021023

    YANG W W, ZHOU Y L, WANG M Y, et al. The self-assembled SnO2-FeO(OH) on natural graphite surface as a high-capacity anode for lithium ion batteries[J]. Journal of South China normal University(Natural Science Edition), 2021, 53(2): 29-34. doi: 10.6054/j.jscnun.2021023
    [2]
    姜雯, 于振江, 王家钧, 等. 钾离子电池负极关键材料研究进展[J]. 电子元件与材料, 2020, 39(12): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL202012002.htm

    JIANG W, YU Z J, WANG J J, et al. Research progress of key anode materials for potassium-ion batteries[J]. Electronic Components Materials, 2020, 39(12): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL202012002.htm
    [3]
    苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
    [4]
    WANG M, PENG A, XU H, et al. Amorphous SnSe quantum dots anchoring on graphene as high-performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469: 228414/1-10. http://www.sciencedirect.com/science/article/pii/S0378775320307187
    [5]
    WANG W, LI P, ZHENG H, et al. Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries[J]. Small, 2017, 13: 1702228/1-7. https://pubmed.ncbi.nlm.nih.gov/29057606/
    [6]
    XU Z, ZHANG Z, ZHEN Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. doi: 10.1016/j.jechem.2017.08.004
    [7]
    ZHENG Y, LI L B, WANG D D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B, 2015, 191: 33-40. doi: 10.1016/j.mseb.2014.10.009
    [8]
    LI K, LIANG M, WANG H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials, 2020, 30: 2000842/1-22. http://www.cnki.com.cn/Article/CJFDTotal-NANO202010018.htm
    [9]
    HEMANTH N R, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review[J]. Chemical Engineering Journal, 2020, 392: 123678/1-15. http://www.sciencedirect.com/science/article/pii/S1385894719330931
    [10]
    ZHAO R, DI H, WANG C, et al. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance[J]. ACS Nano, 2020, 14(10): 13938-13951. doi: 10.1021/acsnano.0c06360
    [11]
    李佳慧, 张晶, 芮秉龙, 等. MXene及其复合材料在钠/钾离子电池中的应用[J]. 化学进展, 2019, 31(9): 1283-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201909011.htm

    LI J H, ZHANG J, RUI B L, et al. Application of MXene and its composites in sodium/potassium ion batteries[J]. Progress in Chemistry, 2019, 31(9): 1283-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201909011.htm
    [12]
    KANG S Z, JIA L, LI X, et al. Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties[J]. Colloids and Surfaces: A Physicochemical and Engineering Aspects, 2012, 406: 1-5. http://www.onacademic.com/detail/journal_1000035370192410_2372.html
    [13]
    ZHAO X, WANG W, ZHEN H, et al. Yolk-shell structured SnSe as a high-performance anode for Na-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6: 562-565. doi: 10.1039/C8QI01337C
    [14]
    CUI Y, XIE X, YANG R, et al. Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries[J]. Electrochemical Acta, 2019.305: 11-23. http://www.onacademic.com/detail/journal_1000041585371399_77de.html
    [15]
    XIONG D, SHI Y, YANG H Y. Rational design of MXene-based films for energy storage: progress, prospects[J]. Materials Today, 2021, 46: 183-211. http://www.sciencedirect.com/science/article/pii/S1369702120304569
    [16]
    VERMA R, DIDWAL P N, KIH S, et al. SnP3/carbon nanocomposite as an anode material for potassium-ion batteries[J]. ACS Applied Materials and Interfaces, 2019, 11(30): 26976-26984. doi: 10.1021/acsami.9b08088
    [17]
    XIA Z, CHEN X, CI H, et al. Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries[J]. Journal of Energy Chemistry, 2020, 53: 155-162. http://www.sciencedirect.com/science/article/pii/S2095495620303417
    [18]
    SUN S, LI R, WANG W, et al. One-dimension coaxial cable-like MWCNTs/Sn4P3@C as anode materials with long-term durability for lithium ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(14): 2651-2659. http://pubs.rsc.org/en/content/articlelanding/qi/2020/d0qi00373e
  • Cited by

    Periodical cited type(1)

    1. 周佳盈,李双鹏,肖煌,高云,夏晓红. 嵌入式四氧化三钴负极材料的赝电容性能研究. 华南师范大学学报(自然科学版). 2023(02): 1-9 .

    Other cited types(0)

Catalog

    Article views (557) PDF downloads (130) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return