• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HUANG Qingwu, ZHOU Peng, ZENG Dawen, SONG Wulin. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 23-27. DOI: 10.6054/j.jscnun.2021088
Citation: HUANG Qingwu, ZHOU Peng, ZENG Dawen, SONG Wulin. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 23-27. DOI: 10.6054/j.jscnun.2021088

The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature

More Information
  • Received Date: May 18, 2021
  • Available Online: January 09, 2022
  • Controllable preparation of defect graphene was successfully realized by reducing cheap sugars with active metal sodium. The graphene material showed excellent humidity sensitivity at room temperature. The characte-rization results showed that the addition of sugars increased the thickness of graphene to 0.4 nm and changed the surface modification groups of the defective graphene and their content(mole ratio). The mole ratio of oxygen-containing groups on the surface of defect graphene prepared with the sucrose precursor is up to 24.2%. The humidity sensitivity of graphene samples with different defect contents at room temperature varies. Compared with the samples without sugar, the room-temperature humidity sensitivity of the defective graphene prepared with the sucrose precursor can be improved by 4.5 times. This study can provide technical reference for the application of graphene-based materials to room-temperature gas sensing.
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [2]
    SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655. doi: 10.1038/nmat1967
    [3]
    张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [4]
    BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011, 5(1): 26-41. doi: 10.1021/nn102598m
    [5]
    孙丰强, 许适溥. 石墨烯材料在气体传感器中的应用[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244

    SUN F Q, XU S B. Application of graphene material in gas sensor[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244
    [6]
    孙丰强, 陈颖. 三维结构化石墨烯及其复合材料[J]. 华南师范大学学报(自然科学版), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm

    SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm
    [7]
    AO Z M, LI S, JIANG Q. Thermal stability of interaction between the CO molecules and the Al doped graphene[J]. Physical Chemistry Chemical Physics, 2009, 11(11): 1683-1687. doi: 10.1039/b812188e
    [8]
    ALLOUCHE A, FERRO Y. Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface[J]. Carbon, 2006, 44(15): 3320-3327. doi: 10.1016/j.carbon.2006.06.014
    [9]
    ZHANG L S, WANG W D, LIANG X Q, et al. Characte-rization of partially reduced graphene oxide as room temperature sensor for H2[J]. Nanoscale, 2011, 3(6): 2458-2460. doi: 10.1039/c1nr10187k
    [10]
    CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotechnology, 2008, 4(1): 30-33. http://media.nature.com/original/nature-assets/nnano/journal/v4/n1/extref/nnano.2008.365-s1.pdf
    [11]
    HUANG Q, ZENG D, LI H, et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites[J]. Nanoscale, 2012, 4(18): 5651-5658. doi: 10.1039/c2nr31131c
    [12]
    ZHANG J, WU C, LI T, et al. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using in-situ growth of PPy on mesoporous NiO nanosheets[J]. Organic Electronics, 2019, 77: 105504/1-9. http://www.sciencedirect.com/science/article/pii/S1566119919305312
    [13]
    SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520. doi: 10.1021/cm901247t
    [14]
    LIAO K H, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258. doi: 10.1021/nn1028967
    [15]
    AGARWAL V, ZETTERLUND P. Strategies for reduction of graphene oxide: a comprehensive review[J]. Chemical Engineering Journal, 2020, 405: 127018/1-29. http://www.sciencedirect.com/science/article/pii/S1385894720331466
    [16]
    MAGUREANU M, MANDACHE N B, RIZESCU C, et al. Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment[J]. Applied Catalysis B: Environmental, 2021, 287: 119962/1-11. http://www.sciencedirect.com/science/article/pii/S0926337321000886
    [17]
    MATTEVI C, EDA G, AGNOLI S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films[J]. Advanced Functional Materials, 2009, 19(16): 2577-2583. doi: 10.1002/adfm.200900166
    [18]
    DAN Y, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters, 2009, 9(4): 1472-1475. doi: 10.1021/nl8033637
    [19]
    WANG C, WANG Y, YANG Z, et al. Review of recent progress on graphene-based composite gas sensors[J]. Ceramics International, 2021, 47(42): 16367-16384. http://www.sciencedirect.com/science/article/pii/S027288422100506X
    [20]
    KHAN N, NAWAZ A, ISLAM B, et al. Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose[J]. Nanotechnology, 2021, 32: 295504/1-16. http://www.ncbi.nlm.nih.gov/pubmed/33588387

Catalog

    Article views (358) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return