Citation: | HUANG Qingwu, ZHOU Peng, ZENG Dawen, SONG Wulin. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(6): 23-27. DOI: 10.6054/j.jscnun.2021088 |
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
|
[2] |
SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655. doi: 10.1038/nmat1967
|
[3] |
张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
|
[4] |
BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011, 5(1): 26-41. doi: 10.1021/nn102598m
|
[5] |
孙丰强, 许适溥. 石墨烯材料在气体传感器中的应用[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244
SUN F Q, XU S B. Application of graphene material in gas sensor[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244
|
[6] |
孙丰强, 陈颖. 三维结构化石墨烯及其复合材料[J]. 华南师范大学学报(自然科学版), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm
SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm
|
[7] |
AO Z M, LI S, JIANG Q. Thermal stability of interaction between the CO molecules and the Al doped graphene[J]. Physical Chemistry Chemical Physics, 2009, 11(11): 1683-1687. doi: 10.1039/b812188e
|
[8] |
ALLOUCHE A, FERRO Y. Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface[J]. Carbon, 2006, 44(15): 3320-3327. doi: 10.1016/j.carbon.2006.06.014
|
[9] |
ZHANG L S, WANG W D, LIANG X Q, et al. Characte-rization of partially reduced graphene oxide as room temperature sensor for H2[J]. Nanoscale, 2011, 3(6): 2458-2460. doi: 10.1039/c1nr10187k
|
[10] |
CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotechnology, 2008, 4(1): 30-33. http://media.nature.com/original/nature-assets/nnano/journal/v4/n1/extref/nnano.2008.365-s1.pdf
|
[11] |
HUANG Q, ZENG D, LI H, et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites[J]. Nanoscale, 2012, 4(18): 5651-5658. doi: 10.1039/c2nr31131c
|
[12] |
ZHANG J, WU C, LI T, et al. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using in-situ growth of PPy on mesoporous NiO nanosheets[J]. Organic Electronics, 2019, 77: 105504/1-9. http://www.sciencedirect.com/science/article/pii/S1566119919305312
|
[13] |
SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520. doi: 10.1021/cm901247t
|
[14] |
LIAO K H, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258. doi: 10.1021/nn1028967
|
[15] |
AGARWAL V, ZETTERLUND P. Strategies for reduction of graphene oxide: a comprehensive review[J]. Chemical Engineering Journal, 2020, 405: 127018/1-29. http://www.sciencedirect.com/science/article/pii/S1385894720331466
|
[16] |
MAGUREANU M, MANDACHE N B, RIZESCU C, et al. Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment[J]. Applied Catalysis B: Environmental, 2021, 287: 119962/1-11. http://www.sciencedirect.com/science/article/pii/S0926337321000886
|
[17] |
MATTEVI C, EDA G, AGNOLI S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films[J]. Advanced Functional Materials, 2009, 19(16): 2577-2583. doi: 10.1002/adfm.200900166
|
[18] |
DAN Y, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters, 2009, 9(4): 1472-1475. doi: 10.1021/nl8033637
|
[19] |
WANG C, WANG Y, YANG Z, et al. Review of recent progress on graphene-based composite gas sensors[J]. Ceramics International, 2021, 47(42): 16367-16384. http://www.sciencedirect.com/science/article/pii/S027288422100506X
|
[20] |
KHAN N, NAWAZ A, ISLAM B, et al. Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose[J]. Nanotechnology, 2021, 32: 295504/1-16. http://www.ncbi.nlm.nih.gov/pubmed/33588387
|