• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
PENG Ting, SUN Caige, ZHANG Yongdong, FAN Fenglei. The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 92-102. DOI: 10.6054/j.jscnun.2021080
Citation: PENG Ting, SUN Caige, ZHANG Yongdong, FAN Fenglei. The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 92-102. DOI: 10.6054/j.jscnun.2021080

The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou

More Information
  • Received Date: December 17, 2020
  • Available Online: November 10, 2021
  • In order to explore the impact of anthropogenic heat emissions on the urban ecological environment, the central urban area of Guangzhou was taken as the research area, the temporal and spatial evolution of urban anthropogenic heat emissions from 2004 to 2020 were explored using the Landsat remote sensing data and the surface energy balance model, and the spatial-temporal characteristics of anthropogenic heat emissions and the norms of the landscape pattern change were analyzed with the transfer matrix and the landscape pattern index. The following results were obtained. First, in terms of time, rapid expansion of anthropogenic heat emission area was the main feature from 2004 to 2014 and dramatic increase of anthropogenic heat emission intensity was the main feature from 2014 to 2020; in terms of space, the intensity of anthropogenic heat emission in the southern part was higher than that in the northern part. Second, as the transfer matrix showed, the anthropogenic heat emission in the central area of Guangzhou changed significantly during the study period. The area of low-emission zone (decreased by 15.72%) in central area changed the most, the area of medium-emission zone (increased by 14.51%) underwent less change, and the area of high-emission zone (increased by 0.28%) changed the least. Transfer from low-emission zone and transfer into middle-emission zone were the main forms, accounting for 97.36% and 98.43% respectively. Third, the contagion index (CONTAG) increased, while the shannon's diversity index (SHDI) and the modified simpon evenness index (MSIEI) decreased. Consequently, the landscape pattern heterogeneity and the degree of fragmentation of anthropogenic heat emission increased. Moreover, there were obvious differences in the evolution of the landscape pattern in zones of different levels of anthropogenic heat emission. The landscape pattern of low- and low-medium-emission zones tend to be stable and regular while the landscape pattern of medium-, medium-high- and high-emission zones tend to be fragmented and irregular.
  • [1]
    OFFERLE B, JONSSON P, ELIASSON I, et al. Urban mo-dification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso[J]. Journal of Climate, 2005, 18(19): 3983-3995. doi: 10.1175/JCLI3520.1
    [2]
    王业宁, 孙然好, 陈利顶. 人为热计算方法的研究综述[J]. 应用生态学报, 2016, 27(6): 2024-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606039.htm

    WANG Y N, SUN R H, CHEN L D. Review on studies of anthropogenic heat emission[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 2024-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606039.htm
    [3]
    白杨, 王晓云, 姜海梅, 等. 城市热岛效应研究进展[J]. 气象与环境学报, 2013, 29(2): 101-106. doi: 10.3969/j.issn.1673-503X.2013.02.016

    BAI Y, WANG X Y, JIANG H M, et al. Progress of urban heat island effect[J]. Journal of Meteorology and Environment, 2013, 29(2): 101-106. doi: 10.3969/j.issn.1673-503X.2013.02.016
    [4]
    WU J. Urban sustainability: an inevitable goal of landscape research[J]. Landscape Ecology, 2010, 25(1): 1-4. doi: 10.1007/s10980-009-9444-7
    [5]
    肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应[J]. 生态学报, 2005, 25(8): 2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032

    XIAO R B, OUYANG Z Y, LI W F, et al. A review of the eco-environmental consequences of urban heat islands[J]. Acta Ecologica Sinica, 2005, 25(8): 2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032
    [6]
    施婕, 谢旻, 朱宽广, 等. 中国城市人为热通量估计及时空分布[J]. 中国环境科学, 2020, 40(4): 1819-1824. doi: 10.3969/j.issn.1000-6923.2020.04.050

    SHI J, XIE M, ZHU K G, et al. Estimation of anthropogenic heat flux and its temporal and spatial distribution in Chinese cities[J]. China Environmental Science, 2020, 40(4): 1819-1824. doi: 10.3969/j.issn.1000-6923.2020.04.050
    [7]
    CHEN S, HU D. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data[J]. Remote Sensing, 2017, 9(11): 1165/1-20. doi: 10.3390/rs9111165
    [8]
    SAILOR D J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J]. International Journal of Climatology, 2011, 31(2): 189-199. doi: 10.1002/joc.2106
    [9]
    孙然好, 王业宁, 陈婷婷. 人为热排放对城市热环境的影响研究展望[J]. 生态学报, 2017, 37(12): 3991-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201712005.htm

    SUN R H, WANG Y N, CHEN T T. Impacts of anthropogenic heat emissions on urban thermal environment: a review[J]. Acta Ecologica Sinica, 2017, 37(12): 3991-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201712005.htm
    [10]
    朱婷媛. 基于Landsat遥感影像的杭州城市人为热定量估算研究[D]. 杭州: 浙江大学, 2015.

    ZHU T Y. Research on the quantitative estimation of urban human heat in Hangzhou based on Landsat remote sensing images[D]. Hangzhou: Zhejiang University, 2015.
    [11]
    王茹, 张艳芳, 张洪敏, 等. 城市新区不透水地表盖度与人为热的关系研究——以陕西省西咸新区为例[J]. 国土资源遥感, 2020, 32(1): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001034.htm

    WANG R, ZHANG Y F, ZHANG H M, et al. Study on the relationship between impervious surface coverage and artificial heat in new urban districts: a case study of Xixian New District, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001034.htm
    [12]
    刘嘉慧, 赵小锋, 林剑艺. 基于地表能量平衡的厦门岛城市功能区人为热排放分析[J]. 地球信息科学学报, 2018, 20(7): 1026-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201807018.htm

    LIU J H, ZHAO X F, LIN J Y. Analysis of anthropogenic heat discharge of urban functional regions based on surface energy balance in Xiamen Island[J]. Journal of Geo-Information Science, 2018, 20(7): 1026-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201807018.htm
    [13]
    KATO S, YAMAGUCHI Y. Analysis of urban heat-island effect using ASTER and ETM+ data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux[J]. Remote Sensing of Environment, 2005, 99(1/2): 44-54. http://www.sciencedirect.com/science/article/pii/S0034425705001707
    [14]
    ZHOU Y, WENG Q, GURNEY K R, et al. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 65-72. doi: 10.1016/j.isprsjprs.2011.10.007
    [15]
    WONG M S, YANG J, NICHOL J, et al. Modeling of anthropogenic heat flux using HJ-1B Chinese small satellite image: a study of heterogeneous urbanized areas in Hong Kong[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1466-1470. doi: 10.1109/LGRS.2015.2409111
    [16]
    HU D, YANG L, ZHOU J, et al. Estimation of urban energy heat flux and anthropogenic heat discharge using aster image and meteorological data: case study in Beijing metropolitan area[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063559/1-20. doi: 10.1117/1.JRS.6.063559
    [17]
    CHEN Q, YANG X, OUYANG Z, et al. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data[J]. Environmental Pollution, 2020, 266: 115183/1-10. doi: 10.1016/j.envpol.2020.115183
    [18]
    CHEN S, HU D, WONG M S, et al. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: a 20-year case study in Beijing-Tianjin-Hebei region in China[J]. Environmental Pollution, 2019, 249: 923-931. doi: 10.1016/j.envpol.2019.03.113
    [19]
    郭泺, 杜世宏, 薛达元, 等. 快速城市化进程中广州市景观格局时空分异特征的研究[J]. 北京大学学报(自然科学版), 2009, 45(1): 129-136. doi: 10.3321/j.issn:0479-8023.2009.01.019

    GUO L, DU S H, XUE D Y, et al. Spatio-temporal variation of landscape patterns during rapid urbanization in Guangzhou City[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 129-136. doi: 10.3321/j.issn:0479-8023.2009.01.019
    [20]
    FAN H, SAILOR D J. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes[J]. Atmospheric Environment, 2005, 39(1): 73-84. doi: 10.1016/j.atmosenv.2004.09.031
    [21]
    乐通潮, 聂森, 潘辉, 等. 基于Landsat8卫星影像的地表温度反演及福州春季城市热岛效应分析[J]. 西北林学院学报, 2019, 34(5): 154-160. doi: 10.3969/j.issn.1001-7461.2019.05.24

    LE T C, NIE S, PAN H, et al. Land surface temperature retrieval and urban heat island effect based on Landsat8 image in Fuzhou City[J]. Journal of Northwest Forestry University, 2019, 34(5): 154-160. doi: 10.3969/j.issn.1001-7461.2019.05.24
    [22]
    潘竟虎. 兰州市景观生态格局热环境效应研究[D]. 兰州: 兰州大学, 2011.

    PAN J H. Study on thermal environment effect of landscape ecological pattern in Lanzhou City[D]. Lanzhou: Lanzhou University, 2011.
    [23]
    OKE T R. The urban energy balance[J]. Progress in Physical Geography, 1988, 12(4): 471-508. doi: 10.1177/030913338801200401
    [24]
    王煜东, 赵小艳, 徐向华, 等. 南京地区地表热通量的遥感反演分析[J]. 生态环境学报, 2016, 25(4): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604013.htm

    WANG Y D, ZHAO X Y, XU X H, et al. Analysis and inversion on surface heat flux with remote sensing in Nanjing Area[J]. Ecology and Environment Sciences, 2016, 25(4): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604013.htm
    [25]
    李红军, 雷玉平, 郑力, 等. SEBAL模型及其在区域蒸散研究中的应用[J]. 遥感技术与应用, 2005(3): 321-325. doi: 10.3969/j.issn.1004-0323.2005.03.003

    LI H J, LEI Y P, ZHEN L, et al. SEBAL model and its application in the study of regional evapotranspiration[J]. Remote Sensing Technology and Application, 2005(3): 321-325. doi: 10.3969/j.issn.1004-0323.2005.03.003
    [26]
    NOILHAN J, LACARRERE P. GCM grid-scale evaporation from mesoscale modeling[J]. Journal of Climate, 1995, 8(2): 206-223. doi: 10.1175/1520-0442(1995)008<0206:GGSEFM>2.0.CO;2
    [27]
    刘瑞, 朱道林. 基于转移矩阵的土地利用变化信息挖掘方法探讨[J]. 资源科学, 2010, 32(8): 1544-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201008017.htm

    LIU R, ZHU D L. Methods for detecting land use changes based on the land use transition matrix[J]. Resources Science, 2010, 32(8): 1544-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201008017.htm
    [28]
    乔伟峰, 盛业华, 方斌, 等. 基于转移矩阵的高度城市化区域土地利用演变信息挖掘——以江苏省苏州市为例[J]. 地理研究, 2013, 32(8): 1497-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201308015.htm

    QIAO W F, SHEN Y H, FANG B, et al. Land use change information mining in highly urbanized area based on transfer matrix: a case study of Suzhou, Jiangsu Province[J]. Geographical Research, 2013, 32(8): 1497-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201308015.htm
    [29]
    冯珊珊, 樊风雷. 基于不透水面的粤港澳大湾区景观格局时空变化[J]. 应用生态学报, 2018, 29(9): 2907-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201809013.htm

    FENG S S, FAN F L. Spatiotemporal changes of landscape pattern using impervious surface in Guangdong-Hong Kong-Macao Greater Bay Area, China[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2907-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201809013.htm
    [30]
    何鹏, 张会儒. 常用景观指数的因子分析和筛选方法研究[J]. 林业科学研究, 2009, 22(4): 470-474. doi: 10.3321/j.issn:1001-1498.2009.04.002

    HE P, ZHANG H R. Study on factor analysis and selection of common landscape metrics[J]. Forest Research, 2009, 22(4): 470-474. doi: 10.3321/j.issn:1001-1498.2009.04.002
    [31]
    叶晶萍, 刘士余, 盛菲, 等. 寻乌水流域景观格局演变及其生态环境效应[J]. 生态学报, 2020, 40(14): 4737-4748. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014004.htm

    YE J P, LIU S Y, SHEN F, et al. The evolution of landscape pattern in Xunwu River Basin and its ecological environment effect[J]. Acta Ecologica Sinica, 2020, 40(14): 4737-4748. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014004.htm
    [32]
    LU Y, WANG Q, ZHANG Y, et al. An estimate of anthropogenic heat emissions in China[J]. International Journal of Climatology, 2016, 36(3): 1134-1142. doi: 10.1002/joc.4407
  • Cited by

    Periodical cited type(9)

    1. 张亚男,何安尤,刘斐,黄琦,肖林,万凌琳. 南亚热带典型河流轮虫物种和功能多样性的空间与季节变化:以柳江为例. 贵州师范大学学报(自然科学版). 2025(01): 15-24+45 .
    2. 李晴,张梦悦,于明乔,李小璇,常明,陈立斌,丁森. 东莞城市河流大型底栖动物群落结构及影响因子. 生态环境学报. 2024(01): 101-110 .
    3. 杨海菊,韦锋,陈嘉美,陈蓓,李方,杜丽娜,韩雪蓉. 一套适用于评价漓江水质的底栖动物多样性指数. 广西师范大学学报(自然科学版). 2024(04): 172-185 .
    4. 吴思萱,曾庆慧,胡鹏,武中强,侯佳明,吕小龙,祖丽菲亚·卡斯木. 伊通河城区段底栖动物完整性对水质的响应时滞. 南水北调与水利科技(中英文). 2023(01): 160-171 .
    5. 杨志昭,张子良,朱弘阳,王茜,孔凡青. 滦河流域大型底栖动物群落结构分析. 农业技术与装备. 2023(06): 78-80+83 .
    6. 杜展鹏,段仲昭,程国微,王明净,高伟,杨汝兰,李天彧. 基于绝对主成分-多元线性回归牧羊河流域水环境污染源解析. 福建师范大学学报(自然科学版). 2023(05): 124-132 .
    7. 吕阳奇,刘财鑫,顾天宇,陈辉,王璐瑶,潘达,吴军. 瓯江源头区龙泉溪底栖大型无脊椎动物多样性和群落特征. 中国环境监测. 2023(06): 142-156 .
    8. 周佳诚,宋志斌,苗芃,谭路,唐涛. 柳江不同河网位置大型底栖动物群落特征及其影响因子差异比较研究. 生态环境学报. 2023(10): 1794-1801 .
    9. 丁振军. 浑河沈阳段底栖动物群落特征及与环境因子的关系. 绿色科技. 2022(10): 37-40 .

    Other cited types(3)

Catalog

    Article views (362) PDF downloads (54) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return