• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LU Pengcheng, WEI Yanfu, WU Honghai, ZHANG Xuan, CHEN Jing. The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 40-48. DOI: 10.6054/j.jscnun.2021056
Citation: LU Pengcheng, WEI Yanfu, WU Honghai, ZHANG Xuan, CHEN Jing. The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 40-48. DOI: 10.6054/j.jscnun.2021056

The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol

More Information
  • Received Date: April 25, 2021
  • Available Online: September 02, 2021
  • Iron-pillared montmorillonite composite catalyst (FPMt) was successfully synthesized by optimizing the design of montmorillonite through the introduction of iron oxides and the calcination treatment. The structural and surface properties of FPMt samples were characterized with X-ray diffraction (XRD), thermogravimetric analysis (TG), TEM, FT-IR, N2 adsorption and desorption isotherms, and 2-Nitrophenol (2-NP, 22 μmol/L) was used as a representative pollutant to identify the reduction catalytic activity of FPMt. The results showed that, compared to montmorillonite, the surface electron transport activity of FPMt was significantly improved due to the increase of adsorption sites of Fe(Ⅱ) and the corresponding reduction of acid sites on the surface of FPMt, significantly enhancing the reduction catalytic performance of the material. In addition to the solution pH and Fe(Ⅱ) concentration, the structural integrity of the catalyst and the crystallinity of hematite are important factors affecting the catalytic activity. Finally, a mediating mechanism for the significant increase in the reduction catalytic activity of complexed Fe(Ⅱ) on the surface of FPMt was proposed.
  • [1]
    WU H H, SONG Z H, LÜ M X, et al. Iron-pillared montmorillonite as an inexpensive catalyst for 2-nitrophenol reduction[J]. Clays and Clay Minerals, 2018, 66(5): 415-425. doi: 10.1346/CCMN.2018.064107
    [2]
    XU M, ZHANG A Q, HAN S K, et al. Studies of 3D-quantitative structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715. doi: 10.1016/S0045-6535(02)00165-0
    [3]
    郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃[J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016

    GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016
    [4]
    TAKAHASHI N, NAKAI T, SATOH Y, et al. Variation of biodegradability of nitrogenous organic compounds by ozonation[J]. Water Research, 1994, 28(7): 1563-1570. doi: 10.1016/0043-1354(94)90223-2
    [5]
    YEHIA F Z, ESHAQ G, ELMETWALLY A E. Enhancement of the working pH range for degradation of p-nitrophenol using Fe2+-aspartate and Fe2+-glutamate complexes as modified Fenton reagents[J]. Egyptian Journal of Petroleum, 2016, 25(2): 239-245. doi: 10.1016/j.ejpe.2015.05.015
    [6]
    高大方, 张刚. 复合光催化剂AgCl/AgBr降解水中四溴双酚A的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024

    GAO D F, ZHANG G. Photocatalytic degradation of Tetrabromobisphenol A with composite AgCl/AgBr[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024
    [7]
    陈可欣, 李立峰, 王熙, 等. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093

    CHEN K X, LI L F, WANG X, et al. The preparation of Z-scheme Cu2O-(rGO-TiO2) photocatalyst and its performance in Methyl Orange degradation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093
    [8]
    KLAUSEN J, TROEBER S P, HADERLEIN S B, et al. Reduction of substituted nitrobenzenes by Fe(ll) in aqueous mineral susiensions[J]. Environmental Science & Technology, 1995, 29(9): 2396-2404. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1021/es00009a036
    [9]
    LI F B, TAO L, FENG C H, et al. Electrochemical evidences for promoted interfacial reactions: the role of Fe(Ⅱ) adsorbed onto γ-Al2O3 and TiO2 in reductive transformation of 2-Nitrophenol[J]. Environmental Science & Technology, 2009, 43(10): 3656-3661. http://www.ncbi.nlm.nih.gov/pubmed/19544869
    [10]
    李观燕, 何广平, 吴宏海, 等. 煅烧铝柱撑蒙脱石材料结合态Fe(Ⅱ)对邻硝基苯酚的还原转化研究[J]. 岩石矿物学杂志, 2015, 34(6): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm

    LI G Y, HE G P, WU H H, et al. The reductive transformation of 2-nitrophenol by Fe(Ⅱ) associated with the thermally treated Al-pillared montmorillonite material[J]. Acta Petrologica et Mineralogica, 2016, 36(4): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm
    [11]
    TAO L, ZHU Z K, LI F B. Fe(Ⅱ)/Cu(Ⅱ) interaction on α-FeOOH, kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425: 92-98. http://www.sciencedirect.com/science/article/pii/S092777571300160X
    [12]
    刘优, 陆琦. 柱撑粘土矿物的研究新进展——新矿物材料研究综述之一[J]. 矿物岩石, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm

    LIU Y, LU Q. New advances of research on pillared clay mineral[J]. Journal of Mineralogy and Petrology, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm
    [13]
    陆琦, 雷新荣, 汤中道, 等. 柱撑粘土矿物材料的晶体结构和晶体化学特征[J]. 地质科技情报, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020

    LU Q, LEI X R, TANG Z D, et al. Crystal structure and crystal chemistry of pillared clay mineral materials[J]. Geological Science and Technology Information, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020
    [14]
    马炽丽, 曾凡桂. 各种柱撑蒙脱石的合成技术现状[J]. 现代技术陶瓷, 2004, 25(3): 19-22, 26. doi: 10.3969/j.issn.1005-1198.2004.03.006

    MA C L, ZENG F G. Recent status of synthesis technique for different pillared montmorillonite[J]. Advanced Ceramics, 2004, 25(3): 19-22;26. doi: 10.3969/j.issn.1005-1198.2004.03.006
    [15]
    BAHRANOWSKI K, GAWEł A, KLIMEK A, et al. Influence of purification method of Na-montmorillonite on textural properties of clay mineral composites with TiO2 nanoparticles[J]. Applied Clay Science, 2017, 140: 75-80. doi: 10.1016/j.clay.2017.01.032
    [16]
    马炽丽. 铝柱撑蒙脱石的制备与表征[D]. 太原: 太原理工大学, 2004.

    MA C L. The preparation and characterization of Al-pillared montmorillonite[D]. Taiyuan: Taiyuan University of Technology, 2004.
    [17]
    丛兴顺. 新型Fe/Cr-Si柱撑蒙脱石的制备, 表征及应用研究[D]. 青岛: 山东科技大学, 2006.

    CONG X S. Studies on preparation, characterization and application of a novel Fe/Cr-Si-pillared montmorillonite catalyst[D]. Qingdao: Shandong University of Science and Technology, 2006.
    [18]
    WU P X, WU W M, LI S Z, et al. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite[J]. Journal of Hazardous Materials, 2009, 169: 824-830. doi: 10.1016/j.jhazmat.2009.04.022
    [19]
    MA L Y, XI Y F, HE H P, et al. Efficiency of Fe-montmorillonite on the removal of Rhodamine B and hexavalent chromium from aqueous solution[J]. Applied Clay Science, 2016, 120: 9-15. doi: 10.1016/j.clay.2015.11.010
    [20]
    TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2006, 64(2): 273-278. doi: 10.1016/j.saa.2005.07.018
    [21]
    BARRIENTOS-VELÁZQUEZ A L, CARDONA A M, LIU L, et al. Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption[J]. Applied Clay Science, 2016, 132/133: 281-289. doi: 10.1016/j.clay.2016.06.014
    [22]
    WU H H, XIE H R, HE G P, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite[J]. Applied Clay Science, 2016, 119: 161-169. doi: 10.1016/j.clay.2015.08.001
    [23]
    MATTHIAS T, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [24]
    LI D, LI C S, SUZUKI K. Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite[J]. Applied Clay Science, 2013, 77/78: 56-60. doi: 10.1016/j.clay.2013.02.027
    [25]
    LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology, 2017, 179: 253-268. doi: 10.1016/j.coal.2017.06.008
    [26]
    MORTLAND M M, RAMAN K V. Surface acidity of smectites in relation to hydration, exchangeable cation, and structure[J]. Clays and Clay Minerals, 1968, 16(5): 393-398. doi: 10.1346/CCMN.1968.0160508
  • Cited by

    Periodical cited type(8)

    1. 孙光辉,段居琦,李俊儒,廖要明. 气候-土地综合影响的我国油茶农业气候区划. 应用气象学报. 2024(04): 444-455 .
    2. 黄晓銮,李卓峰. 基于AHP-灰色关联度法的路基智能压实质量评价. 华南师范大学学报(自然科学版). 2024(03): 40-49 .
    3. 沈爱民,彭勇,黄宇潮,李晓辉. 基于arcgis技术的上饶市油茶信息化管理及产业发展现状初探. 现代食品. 2023(04): 19-21 .
    4. 林宏建,曾钦文,钟东良,李思玲,胡琼文. 河源市油茶种植气候适宜性精细化区划. 广东气象. 2023(03): 87-90 .
    5. 苏玉贞. 新时代乡村振兴战略下广东油茶产业发展现状与路径. 中南林业调查规划. 2022(01): 51-54+65 .
    6. 栾淑丽,任红艳,施润和,崔成. 中国油茶种植适宜性评价及产能提升建议. 中国农业资源与区划. 2021(10): 39-47 .
    7. 丁浩宸,王忠明,范圣明,周汝良. 应用地理栅格对赣无油茶良种适宜种植区域的遴选. 东北林业大学学报. 2020(08): 38-41 .
    8. 刘雅静,张书源,李静,张茜莹,邱权. 坡位和密度对桉树林生产力和林下植被多样性的影响. 林业与环境科学. 2019(04): 48-55 .

    Other cited types(5)

Catalog

    Article views (648) PDF downloads (46) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return