Citation: | LU Pengcheng, WEI Yanfu, WU Honghai, ZHANG Xuan, CHEN Jing. The Surface-mediated Fe(Ⅱ) Reduction System of Iron-pillared Montmorillonite for Efficient Removal of 2-Nitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 40-48. DOI: 10.6054/j.jscnun.2021056 |
[1] |
WU H H, SONG Z H, LÜ M X, et al. Iron-pillared montmorillonite as an inexpensive catalyst for 2-nitrophenol reduction[J]. Clays and Clay Minerals, 2018, 66(5): 415-425. doi: 10.1346/CCMN.2018.064107
|
[2] |
XU M, ZHANG A Q, HAN S K, et al. Studies of 3D-quantitative structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715. doi: 10.1016/S0045-6535(02)00165-0
|
[3] |
郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃[J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016
GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016
|
[4] |
TAKAHASHI N, NAKAI T, SATOH Y, et al. Variation of biodegradability of nitrogenous organic compounds by ozonation[J]. Water Research, 1994, 28(7): 1563-1570. doi: 10.1016/0043-1354(94)90223-2
|
[5] |
YEHIA F Z, ESHAQ G, ELMETWALLY A E. Enhancement of the working pH range for degradation of p-nitrophenol using Fe2+-aspartate and Fe2+-glutamate complexes as modified Fenton reagents[J]. Egyptian Journal of Petroleum, 2016, 25(2): 239-245. doi: 10.1016/j.ejpe.2015.05.015
|
[6] |
高大方, 张刚. 复合光催化剂AgCl/AgBr降解水中四溴双酚A的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024
GAO D F, ZHANG G. Photocatalytic degradation of Tetrabromobisphenol A with composite AgCl/AgBr[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 50-55. doi: 10.6054/j.jscnun.2019024
|
[7] |
陈可欣, 李立峰, 王熙, 等. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093
CHEN K X, LI L F, WANG X, et al. The preparation of Z-scheme Cu2O-(rGO-TiO2) photocatalyst and its performance in Methyl Orange degradation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 50-56. doi: 10.6054/j.jscnun.2020093
|
[8] |
KLAUSEN J, TROEBER S P, HADERLEIN S B, et al. Reduction of substituted nitrobenzenes by Fe(ll) in aqueous mineral susiensions[J]. Environmental Science & Technology, 1995, 29(9): 2396-2404. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1021/es00009a036
|
[9] |
LI F B, TAO L, FENG C H, et al. Electrochemical evidences for promoted interfacial reactions: the role of Fe(Ⅱ) adsorbed onto γ-Al2O3 and TiO2 in reductive transformation of 2-Nitrophenol[J]. Environmental Science & Technology, 2009, 43(10): 3656-3661. http://www.ncbi.nlm.nih.gov/pubmed/19544869
|
[10] |
李观燕, 何广平, 吴宏海, 等. 煅烧铝柱撑蒙脱石材料结合态Fe(Ⅱ)对邻硝基苯酚的还原转化研究[J]. 岩石矿物学杂志, 2015, 34(6): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm
LI G Y, HE G P, WU H H, et al. The reductive transformation of 2-nitrophenol by Fe(Ⅱ) associated with the thermally treated Al-pillared montmorillonite material[J]. Acta Petrologica et Mineralogica, 2016, 36(4): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506014.htm
|
[11] |
TAO L, ZHU Z K, LI F B. Fe(Ⅱ)/Cu(Ⅱ) interaction on α-FeOOH, kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425: 92-98. http://www.sciencedirect.com/science/article/pii/S092777571300160X
|
[12] |
刘优, 陆琦. 柱撑粘土矿物的研究新进展——新矿物材料研究综述之一[J]. 矿物岩石, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm
LIU Y, LU Q. New advances of research on pillared clay mineral[J]. Journal of Mineralogy and Petrology, 1999, 19(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS901.021.htm
|
[13] |
陆琦, 雷新荣, 汤中道, 等. 柱撑粘土矿物材料的晶体结构和晶体化学特征[J]. 地质科技情报, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020
LU Q, LEI X R, TANG Z D, et al. Crystal structure and crystal chemistry of pillared clay mineral materials[J]. Geological Science and Technology Information, 2001, 20(1): 91-99. doi: 10.3969/j.issn.1000-7849.2001.01.020
|
[14] |
马炽丽, 曾凡桂. 各种柱撑蒙脱石的合成技术现状[J]. 现代技术陶瓷, 2004, 25(3): 19-22, 26. doi: 10.3969/j.issn.1005-1198.2004.03.006
MA C L, ZENG F G. Recent status of synthesis technique for different pillared montmorillonite[J]. Advanced Ceramics, 2004, 25(3): 19-22;26. doi: 10.3969/j.issn.1005-1198.2004.03.006
|
[15] |
BAHRANOWSKI K, GAWEł A, KLIMEK A, et al. Influence of purification method of Na-montmorillonite on textural properties of clay mineral composites with TiO2 nanoparticles[J]. Applied Clay Science, 2017, 140: 75-80. doi: 10.1016/j.clay.2017.01.032
|
[16] |
马炽丽. 铝柱撑蒙脱石的制备与表征[D]. 太原: 太原理工大学, 2004.
MA C L. The preparation and characterization of Al-pillared montmorillonite[D]. Taiyuan: Taiyuan University of Technology, 2004.
|
[17] |
丛兴顺. 新型Fe/Cr-Si柱撑蒙脱石的制备, 表征及应用研究[D]. 青岛: 山东科技大学, 2006.
CONG X S. Studies on preparation, characterization and application of a novel Fe/Cr-Si-pillared montmorillonite catalyst[D]. Qingdao: Shandong University of Science and Technology, 2006.
|
[18] |
WU P X, WU W M, LI S Z, et al. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite[J]. Journal of Hazardous Materials, 2009, 169: 824-830. doi: 10.1016/j.jhazmat.2009.04.022
|
[19] |
MA L Y, XI Y F, HE H P, et al. Efficiency of Fe-montmorillonite on the removal of Rhodamine B and hexavalent chromium from aqueous solution[J]. Applied Clay Science, 2016, 120: 9-15. doi: 10.1016/j.clay.2015.11.010
|
[20] |
TYAGI B, CHUDASAMA C D, JASRA R V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy[J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 2006, 64(2): 273-278. doi: 10.1016/j.saa.2005.07.018
|
[21] |
BARRIENTOS-VELÁZQUEZ A L, CARDONA A M, LIU L, et al. Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption[J]. Applied Clay Science, 2016, 132/133: 281-289. doi: 10.1016/j.clay.2016.06.014
|
[22] |
WU H H, XIE H R, HE G P, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite[J]. Applied Clay Science, 2016, 119: 161-169. doi: 10.1016/j.clay.2015.08.001
|
[23] |
MATTHIAS T, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
|
[24] |
LI D, LI C S, SUZUKI K. Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite[J]. Applied Clay Science, 2013, 77/78: 56-60. doi: 10.1016/j.clay.2013.02.027
|
[25] |
LI J, LI X F, WU K L, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[J]. International Journal of Coal Geology, 2017, 179: 253-268. doi: 10.1016/j.coal.2017.06.008
|
[26] |
MORTLAND M M, RAMAN K V. Surface acidity of smectites in relation to hydration, exchangeable cation, and structure[J]. Clays and Clay Minerals, 1968, 16(5): 393-398. doi: 10.1346/CCMN.1968.0160508
|