Citation: | CHEN Meiqiong, GUO Wenxian, CHEN Mengmeng, ZHANG Min, CHENG Faliang. The Preparation and Capacitance Performance of the K2FeO4-activated Biomass Porous Carbon[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 31-39. DOI: 10.6054/j.jscnun.2021055 |
[1] |
ZHOU M, BAHI A, ZHAO Y, et al. Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device[J]. Chemical Engineering Journal, 2021, 409: 128214/1-10. http://www.sciencedirect.com/science/article/pii/S1385894720343308
|
[2] |
VAKROS J, MANARIOTIS I D, DRACOPOULOS V, et al. Biochar from spent malt rootlets and its application to an energy conversion and storage device[J]. Chemosensors, 2021, 9(3): 57/1-3. http://www.researchgate.net/publication/350295197_Biochar_from_Spent_Malt_Rootlets_and_Its_Application_to_an_Energy_Conversion_and_Storage_Device
|
[3] |
THOMAS B, GENG S, SAIN M, et al. Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications[J]. Nanomaterials, 2021, 11(3): 653/1-19. http://www.researchgate.net/publication/349898086_Hetero-Porous_High-Surface_Area_Green_Carbon_Aerogels_for_the_Next-Generation_Energy_Storage_Applications
|
[4] |
YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730. http://www.tandfonline.com/servlet/linkout?suffix=cit0009&dbid=16&doi=10.1080%2F1536383X.2016.1146708&key=10.1039%2FC4EE03229B
|
[5] |
CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/rGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755/1-7. http://www.sciencedirect.com/science/article/pii/S1385894721003521
|
[6] |
ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Review 2009, 38(9): 2520-2531. doi: 10.1039/b813846j
|
[7] |
ZHANG P, MU J, GUO Z, et al. Watermelon peel-derived heteroatom-doped hierarchical porous carbon as a high-performance electrode material for supercapacitors[J]. ChemElectroChem, 2021, 8(6): 1196-1203. doi: 10.1002/celc.202100267
|
[8] |
ZHANG C, ZENG J, XU C, et al. Electric double layer capacitors based on porous three-dimensional graphene materials for energy storage[J]. Journal of Electronic Materials, 2021, 50(6): 3043-3063. doi: 10.1007/s11664-021-08812-z
|
[9] |
YANG B, ZHANG D, SHE W, et al. Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage[J]. Journal of Power Sources, 2021, 492: 229666/1-12.
|
[10] |
SELVARAJ A R, MUTHUSAMY A, INHO C, et al. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors[J]. Carbon, 2021, 174: 463-474. doi: 10.1016/j.carbon.2020.12.052
|
[11] |
MERIN P, JOY P J, MURALIDHARAN M N, et al. Biomass-derived activated carbon for high-performance supercapacitor electrode applications[J]. Chemical Engineering & Technology, 2021, 44(5): 844-851.
|
[12] |
GUO Y, QI J, JIANG Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics, 2003, 80(3): 704-709. doi: 10.1016/S0254-0584(03)00105-6
|
[13] |
WANG J, LIU Q. Fungi-derived hierarchically porous carbons for high-performance supercapacitors[J]. RSC Advances, 2015, 5(6): 4396-4403. doi: 10.1039/C4RA13358G
|
[14] |
SEVILLA M, SANCHÍS C, VALDÉS-SOLÍS T, et al. Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports[J]. Carbon, 2008, 46(6): 931-939. doi: 10.1016/j.carbon.2008.02.019
|
[15] |
WANG Q, NIE Y F, CHEN X Y, et al. Controllable synthesis of 2D amorphous carbon and partially graphitic carbon materials: Large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte[J]. Electrochimica Acta, 2016, 200: 247-258. doi: 10.1016/j.electacta.2016.03.183
|
[16] |
DEMIR M, KAHVECI Z, AKSOY B, et al. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10731-10739. doi: 10.1021/acs.iecr.5b02614
|
[17] |
GONG Y, LI D, LUO C, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. doi: 10.1039/C7GC01681F
|
[18] |
WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710/1-16. http://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm34066f
|
[19] |
SHEN Y. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications[J]. Journal of Materials Chemistry A, 2015, 3(25): 13114-13188. http://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta01228g
|
[20] |
LIU W J, TIAN K, HE Y R, et al. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environmental Science & Technology, 2014, 48(23): 13951-13959. http://www.ncbi.nlm.nih.gov/pubmed/25372400
|
[21] |
RAYMUNDO-PIERO E, AZAÑS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. doi: 10.1016/j.carbon.2004.11.005
|
[22] |
LOZANO-CASTELLÓ D, CALO J M, CAZORLA-AMORÓS D, et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536. doi: 10.1016/j.carbon.2007.08.021
|
[23] |
SEVILLA M, FUERTES A B. Catalytic graphitization of templated mesoporous carbons[J]. Carbon, 2006, 44(3): 468-474. doi: 10.1016/j.carbon.2005.08.019
|
[24] |
SUN L, FU Y, TIAN C, et al. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors[J]. ChemSusChem, 2014, 7(6): 1637-1646. doi: 10.1002/cssc.201400048
|
[25] |
FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401/1-4. http://europepmc.org/abstract/med/17155573
|
[26] |
ZHANG Z Y, XU X C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4[J]. Applied Surface Science, 2015, 346: 520-527. doi: 10.1016/j.apsusc.2015.04.026
|
[27] |
HE X, LING P, QIU J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113. doi: 10.1016/j.jpowsour.2013.03.174
|
1. |
冀占江,刘海林. G-利普希茨跟踪性、G-等度连续和G-非游荡点集的研究. 华南师范大学学报(自然科学版). 2024(04): 111-115 .
![]() |