Citation: | ZHAO Chen, LI Kaicheng, LIN Shouying, ZENG Ziying, LIN Weixin. The Deep Jerk-regularized Extreme Learning Machine for Complex Power Quality Disturbance Classification[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 8-16. DOI: 10.6054/j.jscnun.2021052 |
[1] |
杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201401008.htm
YANG X F, SU J, LLÜ Z P, et al. Overview on micro-grid technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(1): 57-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201401008.htm
|
[2] |
黄建明, 瞿合祚, 李晓明. 基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J]. 电网技术, 2016, 40(10): 3184-3191. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201610036.htm
HUANG J M, QU H Z, LI X M. Classification for hybrid power quality disturbance based on STFT and its spectral kurtosis[J]. Power System Technology, 2016, 40(10): 3184-3191. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201610036.htm
|
[3] |
王仁明, 汪宏阳, 张赟宁, 等. 基于分段改进S变换和随机森林的复合电能质量扰动识别方法[J]. 电力系统保护与控制, 2020, 48(7): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202007003.htm
WANG R M, WANG H Y, ZHANG Y N, et al. Composite power quality disturbance recognition based on segmented modified S-transform and random forest[J]. Power System Protection and Control, 2020, 48(7): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202007003.htm
|
[4] |
郑戍华, 张宁宁, 王向周. 基于提升小波和Hilbert变换的暂态电能质量检测[J]. 北京理工大学学报, 2019, 39(2): 162-168. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201902009.htm
ZHENG S H, ZHANG N N, WANG X Z. A lifting wavelet and Hilbert transform fusion method for transient power quality detection[J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 162-168. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201902009.htm
|
[5] |
徐艳春, 高永康, 李振兴, 等. 基于VMD初始化S变换的混合动力系统电能质量扰动检测与分类[J]. 中国电机工程学报, 2019, 39(16): 4786-4798. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201916014.htm
XU Y C, GAO Y K, LI Z X, et al. Power quality disturbance detection and classification of hybrid power system based on VMD initialization S-transform[J]. Proceedings of the Chinese Society for Electrical Engineering, 2019, 39(16): 4786-4798. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201916014.htm
|
[6] |
唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
TANG X Y, HUANG J B, FENG J W, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
|
[7] |
王维博, 张斌, 曾文入, 等. 基于特征融合一维卷积神经网络的电能质量扰动分类[J]. 电力系统保护与控制, 2020, 48(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202006007.htm
WANG W B, ZHANG B, ZENG W R, et al. Power quality disturbance classification of one-dimensional convolutional neural networks based on feature fusion[J]. Power System Protection and Control, 2020, 48(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202006007.htm
|
[8] |
陈伟, 何家欢, 裴喜平. 基于相空间重构和卷积神经网络的电能质量扰动分类[J]. 电力系统保护与控制, 2018, 46(14): 87-93. doi: 10.7667/PSPC171080
CHEN W, HE J H, PEI X P. Classification for power quality disturbance based on phase-space reconstruction and convolution neural network[J]. Power System Protection and Control, 2018, 46(14): 87-93. doi: 10.7667/PSPC171080
|
[9] |
曹梦舟, 张艳. 基于卷积-长短期记忆网络的电能质量扰动分类[J]. 电力系统保护与控制, 2020, 48(2): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202002011.htm
CAO M Z, ZHANG Y. Classification for power quality disturbances based on CNN-LSTM network[J]. Power System Protection and Control, 2020, 48(2): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202002011.htm
|
[10] |
许立武, 李开成, 罗奕, 等. 基于不完全S变换与梯度提升树的电能质量复合扰动识别[J]. 电力系统保护与控制, 2019, 47(6): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201906004.htm
XU L W, LI K C, LUO Y, et al. Classification of complex power quality disturbances based on incomplete S-transform and gradient boosting decision tree[J]. Power System Protection and Control, 2019, 47(6): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201906004.htm
|
[11] |
陈晓静, 李开成, 肖剑, 等. 一种实时电能质量扰动分类方法[J]. 电工技术学报, 2017, 32(3): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201703006.htm
CHEN X J, LI K C, XIAO J, et al. A method of real-time power quality disturbance classification[J]. Transactionsof China Electrotechnical Society, 2017, 32(3): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201703006.htm
|
[12] |
张巧革, 刘志刚, 朱玲, 等. 基于多标签Rank-WSVM的复合电能质量扰动分类[J]. 中国电机工程学报, 2013, 33(28): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201328016.htm
ZHANG Q G, LIU Z G, ZHU L, et al. Recognition of multiple power quality disturbances using multi-label wavelet support vector machine[J]. Proceedings of the Chinese Society for Electrical Engineering, 2013, 33(28): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201328016.htm
|
[13] |
周雒维, 管春, 卢伟国. 多标签分类法在电能质量复合扰动分类中的应用[J]. 中国电机工程学报, 2011, 31(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201104009.htm
ZHOU L W, GUAN C, LU W G. Application of multi-label classification method to categorization of multiple power quality disturbances[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201104009.htm
|
[14] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neuro-computing, 2006, 70: 489-501.
|
[15] |
KASUN L L C, ZHOU H, HUANG G B, et al. Representational learning with extreme learning machine for big data[J]. IEEE Intelligent Systems, 2013, 28(6): 31-34.
|
[16] |
YADAV R K, ABHISHEK V, et al. Regularization on a rapidly varying manifold[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 1571-1590. doi: 10.1007/s13042-019-01059-5
|
[17] |
ZHAO C, LI K C, LI Y Z, et al. Novel method based on variational mode decomposition and a random discriminative projection extreme learning machine for multiple power quality disturbance recognition[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2915-2926. doi: 10.1109/TII.2018.2871253
|
[18] |
HUANG G, SONG S J, GUPTA J, et al. Semi-supervised and unsupervised extreme learning machines[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417. doi: 10.1109/TCYB.2014.2307349
|
[19] |
GU Y, CHEN Y, LIU J, et al. Semi-supervised deep extreme learning machine for WiFi based localization[J]. Neurocomputing, 2015, 166(20): 282-293. http://www.sciencedirect.com/science/article/pii/S092523121500418X
|
[20] |
SUN K, ZHANG J, ZHANG C, et al. Generalized extreme learning machine autoencoder and a new deep neural network[J]. Neurocomputing, 2016, 230(22): 374-381. http://www.sciencedirect.com/science/article/pii/S092523121631503X
|