• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HE Jianfeng. The Subdirect Sum of Strictly Diagonally Dominant Tensors[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 102-105. DOI: 10.6054/j.jscnun.2021048
Citation: HE Jianfeng. The Subdirect Sum of Strictly Diagonally Dominant Tensors[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 102-105. DOI: 10.6054/j.jscnun.2021048

The Subdirect Sum of Strictly Diagonally Dominant Tensors

More Information
  • Received Date: September 20, 2020
  • Available Online: July 05, 2021
  • The concept of subdirect sum of square matrices is extended to tensors according to the relation between matrix and tensor. The definitions of subdirect sum of tensors and S-strictly diagonally dominant tensors are given. It is proved, with the method of classification, that the subdirect sum of two strictly diagonally dominant tensors is also a strictly diagonally dominant tensor. Moreover, the condition ensuring that the subdirect sum of two tensors is the S-strictly diagonally dominant tensor is also given.
  • [1]
    QI L Q. Eigenvalues of a real supersymmetric tensors[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. doi: 10.1016/j.jsc.2005.05.007
    [2]
    CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6(2): 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
    [3]
    NG M, QI L Q, ZHOU G L. Finding the largest eigenvalue of a nonnegative tensor[J]. Siam Journal on Matrix Analy-sis and Applications, 2009, 31 (3): 1090-1099.
    [4]
    CUI C F, DAI Y H, NIE J W. All real eigenvalues of symmetric tensors[J]. Siam Journal on Matrix Analysis and Applications, 2014, 35(4): 1582-1601. doi: 10.1137/140962292
    [5]
    WANG X Z, WEI Y M. Bounds for eigenvalues of nonsingular H-tensors[J]. Electronic Journal of Linear Algebra, 2015, 29: 3-16. doi: 10.13001/1081-3810.3116
    [6]
    江如. 广义对角占优矩阵的新判据[J]. 华南师范大学学报(自然科学版), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm

    JIANG R. New criteria for generalized diagonally dominant matrices[J]. Journal of South China Normal University(Natural Science Edition), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm
    [7]
    CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6: 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
    [8]
    FALLAT S M, JOHNSON C R. Sub-direct sums and positivity classes of matrices[J]. Linear Algebra and its App-lications, 1999, 288: 149-173. doi: 10.1016/S0024-3795(98)10194-5
    [9]
    FALLAT S M, JOHNSON C R, TORREGROSA J R, et al. P-matrix completions under weak symmetry assumptions[J]. Linear Algebra and its Applications, 2000, 312: 73-91. doi: 10.1016/S0024-3795(00)00088-4
    [10]
    SMITH B F, BJORSTAD P E, GROPP W D. Domain decomposition: parallel multilevel methods for elliptic partial differential equations[M]. Cambridge: Cambridge University Press, 1996.
    [11]
    BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of S- strictly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2006, 15: 201-209. http://www.researchgate.net/publication/250067789_Subdirect_sums_of_S-strictly_diagonally_dominant_matrices
    [12]
    BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of nonsingular M-matrices and of their inverse[J]. Electronic Journal of Linear Algebra, 2005, 13: 162-174. http://www.researchgate.net/publication/265876168_Subdirect_sums_of_nonsingular_M-matrices_and_of_their_inverses
    [13]
    BRU R, CVETKOVIC L, KOSTIC V, et al. Sums of Σ-strictly diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2010, 58(1): 75-78. doi: 10.1080/03081080802379725
    [14]
    ZHU Y, HUANG T Z. Subdirect sum of doubly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2007, 16: 171-182. http://www.researchgate.net/publication/241034219_Subdirect_sums_of_doubly_diagonally_dominant_matrices
    [15]
    LI C Q, LIU Q L, GAO L, et al. Subdirect sums of Nekrasov matrices[J]. Linear and Multilinear Algebra, 2016, 64(2): 208-218. doi: 10.1080/03081087.2015.1032198
    [16]
    LI C Q, MA R D, LIU Q L, et al. Subdirect sums of weakly chained diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2017, 65(6): 1220-1231. doi: 10.1080/03081087.2016.1233933
    [17]
    LIU Q L, HE J F, GAO L, et al. Note on subdirect sums of SDD(p) matrice[J/OL]. (2019-01-21)[2020-08-04]. https://doi.org/10.1080/03081087.2020.1807457.
    [18]
    罗自炎, 祁力群. 半正定张量[J]. 中国科学: 数学, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm

    LUO Z Y, QI L Q. Positive semidefinite tensors[J]. Scientia Sinica Mathematica, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (496) PDF downloads (41) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return