Citation: | HE Jianfeng. The Subdirect Sum of Strictly Diagonally Dominant Tensors[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 102-105. DOI: 10.6054/j.jscnun.2021048 |
[1] |
QI L Q. Eigenvalues of a real supersymmetric tensors[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. doi: 10.1016/j.jsc.2005.05.007
|
[2] |
CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6(2): 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
|
[3] |
NG M, QI L Q, ZHOU G L. Finding the largest eigenvalue of a nonnegative tensor[J]. Siam Journal on Matrix Analy-sis and Applications, 2009, 31 (3): 1090-1099.
|
[4] |
CUI C F, DAI Y H, NIE J W. All real eigenvalues of symmetric tensors[J]. Siam Journal on Matrix Analysis and Applications, 2014, 35(4): 1582-1601. doi: 10.1137/140962292
|
[5] |
WANG X Z, WEI Y M. Bounds for eigenvalues of nonsingular H-tensors[J]. Electronic Journal of Linear Algebra, 2015, 29: 3-16. doi: 10.13001/1081-3810.3116
|
[6] |
江如. 广义对角占优矩阵的新判据[J]. 华南师范大学学报(自然科学版), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm
JIANG R. New criteria for generalized diagonally dominant matrices[J]. Journal of South China Normal University(Natural Science Edition), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm
|
[7] |
CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6: 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
|
[8] |
FALLAT S M, JOHNSON C R. Sub-direct sums and positivity classes of matrices[J]. Linear Algebra and its App-lications, 1999, 288: 149-173. doi: 10.1016/S0024-3795(98)10194-5
|
[9] |
FALLAT S M, JOHNSON C R, TORREGROSA J R, et al. P-matrix completions under weak symmetry assumptions[J]. Linear Algebra and its Applications, 2000, 312: 73-91. doi: 10.1016/S0024-3795(00)00088-4
|
[10] |
SMITH B F, BJORSTAD P E, GROPP W D. Domain decomposition: parallel multilevel methods for elliptic partial differential equations[M]. Cambridge: Cambridge University Press, 1996.
|
[11] |
BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of S- strictly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2006, 15: 201-209. http://www.researchgate.net/publication/250067789_Subdirect_sums_of_S-strictly_diagonally_dominant_matrices
|
[12] |
BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of nonsingular M-matrices and of their inverse[J]. Electronic Journal of Linear Algebra, 2005, 13: 162-174. http://www.researchgate.net/publication/265876168_Subdirect_sums_of_nonsingular_M-matrices_and_of_their_inverses
|
[13] |
BRU R, CVETKOVIC L, KOSTIC V, et al. Sums of Σ-strictly diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2010, 58(1): 75-78. doi: 10.1080/03081080802379725
|
[14] |
ZHU Y, HUANG T Z. Subdirect sum of doubly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2007, 16: 171-182. http://www.researchgate.net/publication/241034219_Subdirect_sums_of_doubly_diagonally_dominant_matrices
|
[15] |
LI C Q, LIU Q L, GAO L, et al. Subdirect sums of Nekrasov matrices[J]. Linear and Multilinear Algebra, 2016, 64(2): 208-218. doi: 10.1080/03081087.2015.1032198
|
[16] |
LI C Q, MA R D, LIU Q L, et al. Subdirect sums of weakly chained diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2017, 65(6): 1220-1231. doi: 10.1080/03081087.2016.1233933
|
[17] |
LIU Q L, HE J F, GAO L, et al. Note on subdirect sums of SDD(p) matrice[J/OL]. (2019-01-21)[2020-08-04]. https://doi.org/10.1080/03081087.2020.1807457.
|
[18] |
罗自炎, 祁力群. 半正定张量[J]. 中国科学: 数学, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm
LUO Z Y, QI L Q. Positive semidefinite tensors[J]. Scientia Sinica Mathematica, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm
|