Citation: | ZHAN Yan, ZHAO Hao. Characteristic Functions of Smooth Fibrations and Induced Smooth Fibrations[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 85-89. DOI: 10.6054/j.jscnun.2021013 |
[1] |
GRAY B. Homotopy theory[M]. London: Academic Press, 1975.
|
[2] |
SPANIER E H. Algebraic topology[M]. New York: Sprin-ger, 1966.
|
[3] |
SOURIAU J M. Groupes differentiels[M]. Berlin: Sprin-ger, 1980.
|
[4] |
LAUBINGER M. Diffeological spaces[J]. Proyecciones(Antofagasta), 2006, 25(2): 151-178.
|
[5] |
LESLIE J. On a diffeological group gealization of certain generalized symmetrizable Kac-Moody Lie algebras[J]. Journal of Lie Theory, 2003, 2(2): 427-442. http://www.emis.ams.org/journals/JLT/vol.13_no.2/12.html
|
[6] |
WALDORF K. Transgression to loop spaces and its inverse Ⅰ: diffeological bundles and fusion maps[J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques LⅢ, 2012, 53: 162-210. http://www.ams.org/mathscinet-getitem?mr=2980505
|
[7] |
KARSHON Y, WATTS J. Basic forms and orbit spaces: a diffeological approach[J]. Symmetry Integrability and Geometry Methods and Applications, 2016, 26(12): 1-19. http://www.emis.ams.org/journals/SIGMA/2016/026/
|
[8] |
PERVOVA E. Pseudo-bundles of exterior algebras as di-ffeological clifford modules[J]. Advances in Applied Cli-fford Algebras, 2017, 27: 2677-2737. doi: 10.1007/s00006-017-0769-z
|
[9] |
IWASE N, IZUMIDA N. Mayer-Vietoris sequence for di-fferentiable/diffeological spaces[J/OL]. arXiv, (2015-11- 22)[2020-09-24]. https://arxiv.org/abs/1511.06948.
|
[10] |
IGLESIAS-ZEMMOUR P. Diffeology[M]. Providence, RI: American Mathematical Society, 2013.
|
[11] |
HARAGUCHI T, SHIMAKAWA K. A model structure on the category of diffeological spaces[J/OL]. arXiv, (2013-11-22)[2020-09-24]. https://arxiv.org/abs/1311.5668.
|
[12] |
HARAGUCHI T. Homotopy structures of smooth CW complexes[J/OL]. arXiv, (2018-11-15)[2020-09-24]. https://arxiv.org/abs/1811.06175.
|