• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAN Yan, ZHAO Hao. Characteristic Functions of Smooth Fibrations and Induced Smooth Fibrations[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 85-89. DOI: 10.6054/j.jscnun.2021013
Citation: ZHAN Yan, ZHAO Hao. Characteristic Functions of Smooth Fibrations and Induced Smooth Fibrations[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 85-89. DOI: 10.6054/j.jscnun.2021013

Characteristic Functions of Smooth Fibrations and Induced Smooth Fibrations

More Information
  • Received Date: September 23, 2020
  • Available Online: March 23, 2021
  • The equivalent description of smooth fibration and smooth cofibration was studied in the category of di-ffeological spaces. By applying the smooth lifting function and the smooth retracting function, it was respectively shown that a smooth map is a smooth fibration if and only if it has a corresponding smooth lifting function and a smooth cofibration if and only if it has a corresponding smooth retracting function. Meanwhile, it was also shown that the smooth map between smooth mapping spaces induced by a smooth fibration or a smooth cofibration is again a smooth fibration.
  • [1]
    GRAY B. Homotopy theory[M]. London: Academic Press, 1975.
    [2]
    SPANIER E H. Algebraic topology[M]. New York: Sprin-ger, 1966.
    [3]
    SOURIAU J M. Groupes differentiels[M]. Berlin: Sprin-ger, 1980.
    [4]
    LAUBINGER M. Diffeological spaces[J]. Proyecciones(Antofagasta), 2006, 25(2): 151-178.
    [5]
    LESLIE J. On a diffeological group gealization of certain generalized symmetrizable Kac-Moody Lie algebras[J]. Journal of Lie Theory, 2003, 2(2): 427-442. http://www.emis.ams.org/journals/JLT/vol.13_no.2/12.html
    [6]
    WALDORF K. Transgression to loop spaces and its inverse Ⅰ: diffeological bundles and fusion maps[J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques LⅢ, 2012, 53: 162-210. http://www.ams.org/mathscinet-getitem?mr=2980505
    [7]
    KARSHON Y, WATTS J. Basic forms and orbit spaces: a diffeological approach[J]. Symmetry Integrability and Geometry Methods and Applications, 2016, 26(12): 1-19. http://www.emis.ams.org/journals/SIGMA/2016/026/
    [8]
    PERVOVA E. Pseudo-bundles of exterior algebras as di-ffeological clifford modules[J]. Advances in Applied Cli-fford Algebras, 2017, 27: 2677-2737. doi: 10.1007/s00006-017-0769-z
    [9]
    IWASE N, IZUMIDA N. Mayer-Vietoris sequence for di-fferentiable/diffeological spaces[J/OL]. arXiv, (2015-11- 22)[2020-09-24]. https://arxiv.org/abs/1511.06948.
    [10]
    IGLESIAS-ZEMMOUR P. Diffeology[M]. Providence, RI: American Mathematical Society, 2013.
    [11]
    HARAGUCHI T, SHIMAKAWA K. A model structure on the category of diffeological spaces[J/OL]. arXiv, (2013-11-22)[2020-09-24]. https://arxiv.org/abs/1311.5668.
    [12]
    HARAGUCHI T. Homotopy structures of smooth CW complexes[J/OL]. arXiv, (2018-11-15)[2020-09-24]. https://arxiv.org/abs/1811.06175.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return