• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JIANG Mei, MA Changshe. A Two-Round Lattice-Based Multi-Signature Scheme[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 113-120. DOI: 10.6054/j.jscnun.2020102
Citation: JIANG Mei, MA Changshe. A Two-Round Lattice-Based Multi-Signature Scheme[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 113-120. DOI: 10.6054/j.jscnun.2020102

A Two-Round Lattice-Based Multi-Signature Scheme

More Information
  • Received Date: January 09, 2020
  • Available Online: January 04, 2021
  • In order to resist quantum attacks and further reduce the communication cost, a two-round algebraic la-ttice-based multi-signature scheme (TLMS scheme) supporting public key aggregation is proposed. The scheme is provably secure in the random oracle model under the ring version of the short integer solution (Ring-SIS) assumption. Compared with the existing multi-signature schemes, the two-round lattice-based multi-signature scheme needs only two rounds of interactions to generate a multi-signature, requires less computing and communication overhead and can meet the latest security requirements in the quantum era.
  • [1]
    ITAKURA K, NAKAMURA K. A public-key cryptosystem suitable for digital multisignatures[J]. NEC Research & Development, 1983(71):1-8. http://ci.nii.ac.jp/naid/80001758745
    [2]
    许艳.面向多用户的无证书数字签名方案研究[D].合肥: 中国科学技术大学, 2015.

    XU Y. Research on multi-user oriented certificateless digital signature schemes[D]. Hefei: University of Science and Technology of China, 2015.
    [3]
    OKAMOTO T. A digital multisignature scheme using bijective public-key cryptosystems[J]. ACM Transactions on Computer Systems (TOCS), 1988, 6(4):432-441.
    [4]
    PARK S, PARK S, KIM K, et al. Two efficient RSA multisignature schemes[C]//Proceedings of the First International Conference on Information and Communications Security. Berlin: Springer, 1997: 217-222.
    [5]
    BELLARE M, NEVEN G. Multi-signatures in the plain public-key model and a general forking lemma[C]//Proceedings of the 13th ACM conference on Computer and communications security. New York: ACM, 2006: 390-399.
    [6]
    BAGHERZANDI A, CHEON J H, JAECKI S. Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma[C]//Proceedings of the 15th ACM Conference on Computer and communications security. New York: ACM, 2008: 449-458.
    [7]
    MA C, WENG J, LI Y, et al. Efficient discrete logarithm based multi-signature scheme in the plain public key model[J]. Designs, Codes and Cryptography, 2010, 54(2):121-133.
    [8]
    EL BANSARKHANI R, STURM J. An efficient lattice-based multisignature scheme with applications to bitcoins[C]//Proceedings of the 15th International Conference on Cryptology and Network Security. Cham: Springer, 2016: 140-155.
    [9]
    颜华.多重数字签名研究[D].西宁: 青海师范大学, 2013.
    [10]
    SYTA E, TAMAS I, VISHER D, et al. Keeping authorities "honest or bust" with decentralized witness cosigning[C]//Proceedings of the 37th IEEE Symposium on Security and Privacy. San Jose: IEEE, 2016: 526-545.
    [11]
    MAXWELL G, POELSTRA A, SEURIN Y, et al. Simple schnorr multi-signatures with applications to bitcoin[J]. Designs, Codes and Cryptography, 2019, 87(9):2139-2164.
    [12]
    DRIJVERS M, EDALATNEJAD K, FORD B, et al. On the security of two-round multi-signatures[C]//Proceedings of the 40th IEEE Symposium on Security and Privacy. San Francisco: IEEE, 2019: 1084-1101.
    [13]
    GVNEYSU T, LYUBASHEVSKY V, PÖPPELMANN T. Practical lattice-based cryptography: a signature scheme for embedded systems[C]//Proceedings of the 14th International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2012: 530-547.
    [14]
    BAUM C, DAMGÄRD I, LYUBASHEVSKY V, et al. More efficient commitments from structured lattice assumptions[C]//Proceedings of the 11th International Conference on Security and Cryptography for Networks. Cham: Sprin-ger, 2018: 368-385.
    [15]
    GVNEYSU T, ODER T, PÖPPELMANN T, et al. Software speed records for lattice-based signatures[C]//Procee-dings of the 5th International Workshop on Post-Quantum Cryptography. Berlin: Springer, 2013: 67-82.
    [16]
    MICCIANCIO D. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions[C]//Proceedings of the 43rd Annual Symposium on Foundations of Computer Science. Vancouver: IEEE, 2002: 356-365.
    [17]
    LYUBASHEVSKY V, SEILER G. Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs[C]//Advances in Cryptology-EUROCRYPT 2018. Cham: Sprin-ger, 2018: 204-224.
    [18]
    GOLDWASSER S, MICALI S, RIVEST R L. A digital signature scheme secure against adaptive chosen-message attacks[J]. SIAM Journal on Computing, 1988, 17(2):281-308.
    [19]
    LYUBASHEVSKY V. Lattice signatures without trapdoors[C]//Advances in Cryptology-EUROCRYPT 2012. Berlin: Springer, 2012: 738-755.
    [20]
    GAMA N, NGUYEN P Q. Predicting lattice reduction[C]//Advances in Cryptology-EUROCRYPT 2008. Berlin: Springer, 2008: 31-51.
    [21]
    CHEN Y, NGUYEN P Q. BKZ 2.0: Better lattice security estimates[C]//Advances in Cryptology-ASIACRYPT 2011. Berlin: Springer, 2011: 1-20.
  • Related Articles

    [1]CHEN Jiahao, XING Hanfa, CHEN Xianglong. Automatic Building Extraction from Remote Sensing Images Based on Cascaded CRFs and the U-Net Deep Learning Model[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 70-78. DOI: 10.6054/j.jscnun.2022011
    [2]LIU Hechao, WU Rangwei, YOU Lihua. Three Types of Kirchhoff Indices in the Random Cyclooctane Chains[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 96-103. DOI: 10.6054/j.jscnun.2021031
    [3]LI Ning, WANG Lina. An Analysis of the Factors in Total Water Consumption Based on Random Forest Regression Algorithm: A Case Study of Guangdong Province[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 78-84. DOI: 10.6054/j.jscnun.2021012
    [4]QUAN Junliang, HU Hua. Restricted Dividends in the Two-dimension Dual Model under Diffusion and Capital Injection[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 97-102. DOI: 10.6054/j.jscnun.2020100
    [5]YU Hanyu, HUANG Jin, ZHU Jia. Fea2Lab: A Feature-to-Label Generation Model Based on Multi-Label Learning[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 111-119. DOI: 10.6054/j.jscnun.2020052
    [6]Internet Credit Personal Credit Assessing Method Based on Multi-model Ensemble[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6): 119-123. DOI: 10.6054/j.jscnun.2017170
    [7]Two-Phase Model of Processing Temporal Shifts in Text Reading:Evidence from ERP Experiments[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(1): 122-127.
    [8]THE GROWTH OF DIRICHLET SERIES AND RANDOM DIRICHLET SERIES IN THE HALF PLANE[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(2).
    [9]WANG Li-bin, PAN Jia-Xin, MA Chang-She. Efficient and Semantic Secure Password-Based Key Exchange Protocol[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(2).
    [10]The Distribution of Values of Random Dirichlet Series in the right half plane[J]. Journal of South China Normal University (Natural Science Edition), 2007, 1(2).
  • Cited by

    Periodical cited type(1)

    1. 王锦丽,钟春晓,李蓉,任喜梅. 超常介质中空间光孤子传输特性研究. 激光杂志. 2021(11): 36-40 .

    Other cited types(0)

Catalog

    Article views (419) PDF downloads (64) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return