• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YAO Tingfu, LI Shunli. An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 90-96. DOI: 10.6054/j.jscnun.2020099
Citation: YAO Tingfu, LI Shunli. An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 90-96. DOI: 10.6054/j.jscnun.2020099

An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach

  • A novel linear numerical scheme for the Cahn-Hilliard equation is constructed with the invariant energy quadratization approach. All nonlinear terms in this scheme are treated semi-explicitly and the resulting semi-discrete equation forms a linear system at each time step. It is proved that the proposed scheme is energy-stable unconditionally and solvable uniquely. The error estimate of the numerical scheme for the Cahn-Hilliard equation is discussed. Numerical examples show that the numerical solution of the linear numerical scheme basically achieves the second-order accuracy in the time direction and can effectively simulate the phase change process.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return