Citation: | YAO Tingfu, LI Shunli. An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 90-96. DOI: 10.6054/j.jscnun.2020099 |
[1] |
RUBINSTEIN J, STERNBERG P. Nonlocal reaction-diffu-sion equations and nucleation[J]. Ima Journal of Applied Mathematics, 1992, 48(3):249-264.
|
[2] |
LOWENGRUB J, TRUSKINOVSKY L. Quasi-incompre-ssible Cahn-Hilliard fluids and topological transitions[J]. Proceedings Mathematical Physical and Engineering Sciences, 1998, 454(1978):2617-2654.
|
[3] |
ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics[J]. Annual Review of Fluid Mechanics, 1998, 30(1):139-165.
|
[4] |
LIU C, SHEN J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method[J]. Physical D:Nonlinear Phenome-na, 2003, 179(3/4):211-228.
|
[5] |
CHEN X F, HILHORST D, LOGAK E. Mass conserving Allen-Cahn equation and volume preserving mean curvature flow[J]. Interface and Free Boundaries, 2010, 12(4):527-549.
|
[6] |
BRASSEL M, BRETIN E. A modified phase field approximation for mean curvature flow with conservation of the volume[J]. Mathematical Methods in the Applied Science, 2011, 34(10):1157-1180.
|
[7] |
CAHN J W, HILLIARD J E. Free energy of a non-uniform system I. interfacial free energy[J]. Journal of Chemical Physics, 1958, 28(2):258-267.
|
[8] |
闫静叶, 孙建强.复修正KdV方程的多辛整体保能量方法[J].华南师范大学学报(自然科学版), 2018, 50(2):112-115.
YAN J Y, SUN J Q. Global energy-preserving method for the complex modified KdV equations[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(2):112-115.
|
[9] |
ZHAO J, WANG Q, YANG X F. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach[J]. International Journal for Numerical Methods in Enginee-ring, 2016, 33(10):1150-1172.
|
[10] |
YANG X F, ZHAO J, WANG Q. Numerical approximations for the molecular beam expitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics, 2017, 333:104-127. http://www.sciencedirect.com/science/article/pii/S0021999116306799
|
[11] |
LI H W, JU L L, ZHANG C F, et al. Unconditionally energy stable linear schemes for the diffuse interface model with peng-robinson equation of state[J]. Journal of Scientific Computing, 2018, 75(2):993-1015.
|
[12] |
YANG X F, ZHAO J, WANG Q, et al. Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method[J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(11):1993-2030.
|
[13] |
朱云峰. Lax-Milgram定理的发展与应用[D].长春: 吉林大学, 2009.
ZHU Y F. The development and applications of Lax-Milgram theorem[J]. Changchun: Jilin University, 2009.
|