• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YAO Tingfu, LI Shunli. An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 90-96. DOI: 10.6054/j.jscnun.2020099
Citation: YAO Tingfu, LI Shunli. An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 90-96. DOI: 10.6054/j.jscnun.2020099

An Error Analysis of a Numerical Scheme for the Cahn-Hilliard Equation Based on the Invariant Energy Quadratization Approach

More Information
  • Received Date: March 23, 2020
  • Available Online: January 04, 2021
  • A novel linear numerical scheme for the Cahn-Hilliard equation is constructed with the invariant energy quadratization approach. All nonlinear terms in this scheme are treated semi-explicitly and the resulting semi-discrete equation forms a linear system at each time step. It is proved that the proposed scheme is energy-stable unconditionally and solvable uniquely. The error estimate of the numerical scheme for the Cahn-Hilliard equation is discussed. Numerical examples show that the numerical solution of the linear numerical scheme basically achieves the second-order accuracy in the time direction and can effectively simulate the phase change process.
  • [1]
    RUBINSTEIN J, STERNBERG P. Nonlocal reaction-diffu-sion equations and nucleation[J]. Ima Journal of Applied Mathematics, 1992, 48(3):249-264.
    [2]
    LOWENGRUB J, TRUSKINOVSKY L. Quasi-incompre-ssible Cahn-Hilliard fluids and topological transitions[J]. Proceedings Mathematical Physical and Engineering Sciences, 1998, 454(1978):2617-2654.
    [3]
    ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics[J]. Annual Review of Fluid Mechanics, 1998, 30(1):139-165.
    [4]
    LIU C, SHEN J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method[J]. Physical D:Nonlinear Phenome-na, 2003, 179(3/4):211-228.
    [5]
    CHEN X F, HILHORST D, LOGAK E. Mass conserving Allen-Cahn equation and volume preserving mean curvature flow[J]. Interface and Free Boundaries, 2010, 12(4):527-549.
    [6]
    BRASSEL M, BRETIN E. A modified phase field approximation for mean curvature flow with conservation of the volume[J]. Mathematical Methods in the Applied Science, 2011, 34(10):1157-1180.
    [7]
    CAHN J W, HILLIARD J E. Free energy of a non-uniform system I. interfacial free energy[J]. Journal of Chemical Physics, 1958, 28(2):258-267.
    [8]
    闫静叶, 孙建强.复修正KdV方程的多辛整体保能量方法[J].华南师范大学学报(自然科学版), 2018, 50(2):112-115.

    YAN J Y, SUN J Q. Global energy-preserving method for the complex modified KdV equations[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(2):112-115.
    [9]
    ZHAO J, WANG Q, YANG X F. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach[J]. International Journal for Numerical Methods in Enginee-ring, 2016, 33(10):1150-1172.
    [10]
    YANG X F, ZHAO J, WANG Q. Numerical approximations for the molecular beam expitaxial growth model based on the invariant energy quadratization method[J]. Journal of Computational Physics, 2017, 333:104-127. http://www.sciencedirect.com/science/article/pii/S0021999116306799
    [11]
    LI H W, JU L L, ZHANG C F, et al. Unconditionally energy stable linear schemes for the diffuse interface model with peng-robinson equation of state[J]. Journal of Scientific Computing, 2018, 75(2):993-1015.
    [12]
    YANG X F, ZHAO J, WANG Q, et al. Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method[J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(11):1993-2030.
    [13]
    朱云峰. Lax-Milgram定理的发展与应用[D].长春: 吉林大学, 2009.

    ZHU Y F. The development and applications of Lax-Milgram theorem[J]. Changchun: Jilin University, 2009.

Catalog

    Article views (528) PDF downloads (74) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return