• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
FENG Shanshan, LIANG Xueying, FAN Fenglei, WANG Sai, WU Jianheng. Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 74-81. DOI: 10.6054/j.jscnun.2020098
Citation: FENG Shanshan, LIANG Xueying, FAN Fenglei, WANG Sai, WU Jianheng. Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 74-81. DOI: 10.6054/j.jscnun.2020098

Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data

More Information
  • Received Date: March 31, 2020
  • Available Online: January 04, 2021
  • In order to improve the efficiency of precision farmland management, a method to quickly monitor the soil moisture content of farmland is designed, based on remote sensing data transmitted and obtained in real time with unmanned aerial vehicle (UAV). Firstly, multispectral images of farmland were obtained through UAV and a representative area of farmland was selected to detect the soil moisture content of random samples. Then, the perpendicular drought index (PDI) method, combined with the soil moisture data of samples, were used to construct an inversion model of soil moisture, with which the data of the soil moisture of a wide range of farmland were finally obtained. UAV images and soil moisture data in 6 different periods were used for the inversion accuracy analysis and the method validation. The results showed that this method is of high precision in soil moisture monitoring, with the coefficient of determination (R2) being more than 0.8 in 6 periods and the root mean square error (RMSE) and the systematic error (SE) being both less than 0.1 in 5 periods. This method of soil moisture monitoring based on UAV data had its validity and feasibility proved and could provide reference for rapid monitoring of large-scale farmland soil moisture.
  • [1]
    MORAN M S, HYMER D C, QI J, et al. Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions[J]. Remote Sensing of Environment, 2002, 79(2/3):243-252. http://www.sciencedirect.com/science/article/pii/S0034425701002760
    [2]
    KUMAR S V, DIRMEYER P A, PETERS-LIDARD C D, et al. Information theoretic evaluation of satellite soil moisture retrievals[J]. Remote Sensing of Environment, 2018, 204:392-400. http://www.sciencedirect.com/science/article/pii/S0034425717304789
    [3]
    伍漫春, 丁建丽, 王高峰.基于地表温度-植被指数特征空间的区域土壤水分反演[J].中国沙漠, 2012, 32(1):148-154. http://d.wanfangdata.com.cn/Periodical/zgsm201201023

    WU M C, DING J L, WANG G F. Regional soil moisture inversion based on surface temperature and vegetation index characteristic spaces[J]. Journal of Desert Research, 2012, 32(1):148-154. http://d.wanfangdata.com.cn/Periodical/zgsm201201023
    [4]
    汝博文, 缴锡云, 王耀飞, 等.基于MODIS数据的土壤水分空间变异规律[J].中国农村水利水电, 2016(4):38-42. http://d.wanfangdata.com.cn/Periodical/zgncslsd201604010

    RU B W, JIAO X Y, WANG Y F, et al. Spatial variability of soil moisture content based in MODIS data[J]. China Rural Water and Hydropower, 2016(4):38-42. http://d.wanfangdata.com.cn/Periodical/zgncslsd201604010
    [5]
    仝兆远, 张万昌.土壤水分遥感监测的研究进展[J].水土保持通报, 2007(4):107-113. http://www.cqvip.com/Main/Detail.aspx?id=25293937

    TONG Z Y, ZHANG W C. Progress of soil moisture monitoring by remote sensing[J]. Bulletin of Soil and Water Conservation, 2007(4):107-113. http://www.cqvip.com/Main/Detail.aspx?id=25293937
    [6]
    吴黎, 张有智, 解文欢, 等.土壤水分的遥感监测方法概述[J].国土资源遥感, 2014, 26(2):19-26. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201402004.htm

    WU L, ZHANG Y Z, XIE W H, et al. Summary of remote sensing methods for monitoring soil moisture[J]. Remote Sensing for Land & Resources, 2014, 26(2):19-26. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201402004.htm
    [7]
    IDSO S B, JACKSON R D, PINTER P J, et al. Normalizing the stress-degree-day parameter for environmental variability[J]. Agricultural Meteorology, 1981, 24(1):45-55. http://www.sciencedirect.com/science/article/pii/0002157181900327
    [8]
    JACKSON R D, IDSO S B, REGINATO R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981, 17(4):1133-1138. doi: 10.1029/WR017i004p01133/pdf
    [9]
    MORAN M S, CLARKE T R, INOUE Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49(3):246-263.
    [10]
    CARLSON T N, GILLIES R R, PERRY E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994, 9(1):161-173. doi: 10.1080/02757259409532220
    [11]
    ULABY F T, ASLAM A, DOBSON M C. Effects of vegetation cover on the radar sensitivity to soil moisture[J]. IEEE Transactions on Geoscience & Remote Sensing, 1982, 20(4):476-481. http://ieeexplore.ieee.org/document/4157335
    [12]
    李杏朝.微波遥感监测土壤水分的研究初探[J].遥感技术与应用, 1995(4):1-8. http://www.cnki.com.cn/Article/CJFDTotal-YGJS504.000.htm

    LI X C. A study on soil moisture monitoring by using microwave remote sensing[J]. Remote Sensing Technology & Application, 1995(4):1-8. http://www.cnki.com.cn/Article/CJFDTotal-YGJS504.000.htm
    [13]
    GHULAM A, QIN Q, ZHAN Z. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6):1045-1052. doi: 10.1007/s00254-006-0544-2
    [14]
    詹志明, 秦其明, 阿布都瓦斯提·吾拉木, 等.基于NIR-Red光谱特征空间的土壤水分监测新方法[J].中国科学:D辑, 2006(11):1020-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200611004.htm

    ZHAN Z M, QIN Q M, GHULAM A, et al. A new method of soil moisture monitoring based on NIR-Red spectral feature space[J]. Science in China:Series D, 2006(11):1020-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200611004.htm
    [15]
    陈国茜, 周秉荣, 胡爱军.垂直干旱指数在高寒农区春旱监测中的应用研究[J].遥感技术与应用, 2014, 29(6):949-953. http://d.wanfangdata.com.cn/Periodical/ygjsyyy201406008

    CHEN G X, ZHOU B R, HU A J. Application research of perpendicular drought index for spring drought monitoring in high and cold agricultural area[J]. Remote Sensing Technology & Application, 2014, 29(6):949-953. http://d.wanfangdata.com.cn/Periodical/ygjsyyy201406008
    [16]
    鹿国武, 尚建设, 周清, 等.基于高分一号数据的干旱监测方法研究[J].能源与环保, 2020, 42(1):63-66. http://www.ixueshu.com/document/2e1c32172b661dd8ebf9dfd2fc35f29d318947a18e7f9386.html

    LU G W, SHANG J S, ZHOU Q, et al. Research on drought monitoring method based on data of GF-1[J]. China Energy and Environmental Protection, 2020, 42(1):63-66. http://www.ixueshu.com/document/2e1c32172b661dd8ebf9dfd2fc35f29d318947a18e7f9386.html
    [17]
    张智韬, 王海峰, 韩文霆, 等.基于无人机多光谱遥感的土壤含水率反演研究[J].农业机械学报, 2018, 49(2):173-181. http://d.wanfangdata.com.cn/periodical/nyjxxb201802023

    ZHANG Z T, WANG H F, HAN W T, et al. Inversion of soil moisture content based on multispectral remote sen-sing of UAVs[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(2):173-181. http://d.wanfangdata.com.cn/periodical/nyjxxb201802023
    [18]
    陈震, 马春芽, 孙浩, 等.基于无人机影像的作物土壤水分亏缺反演方法[J].中国农业信息, 2019, 31(4):23-35. http://d.wanfangdata.com.cn/periodical/nyxxts201904003

    CHEN Z, MA C Y, SUN H, et al. The inversion methods for water stress of irrigation crop based on unmanned aerial vehicle remote sensing[J]. China Agricultural Informa-tics, 2019, 31(4):23-35. http://d.wanfangdata.com.cn/periodical/nyxxts201904003
    [19]
    葛翔宇, 丁建丽, 王敬哲, 等.一种基于无人机高光谱影像的土壤墒情检测新方法[J].光谱学与光谱分析, 2020, 40(2):602-609. http://d.wanfangdata.com.cn/periodical/gpxygpfx202002046

    GE X Y, DING J L, WANG J Z, et al. A new method for predicting soil moisture based on UAV hyperspectral ima-ge[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):602-609. http://d.wanfangdata.com.cn/periodical/gpxygpfx202002046
    [20]
    DEERING D W. Measuring "forage production" of gra-zing units from Landsat MSS data[C]//Proceedings of the 10th International Symposium on Remote Sensing of Environment. Ann Arbor, Michigan: Environmental Research Institute of Michigan, 1975: 1169-1178.
    [21]
    赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
  • Cited by

    Periodical cited type(20)

    1. 张成才,祝星星,姜明梁,王蕊,侯佳彤. 基于无人机MiniSAR和多光谱遥感数据的冬小麦土壤墒情反演. 节水灌溉. 2025(03): 105-112 .
    2. 阙艳红,吴苏,姜明梁,张成才,李风波,李炎朋. 融合多源遥感数据的夏玉米土壤水分反演方法对比研究. 节水灌溉. 2024(03): 91-98 .
    3. 王丽妍. 智能化农业技术在东北地区水稻种植上的应用. 特种经济动植物. 2024(05): 173-175 .
    4. 张成才,王蕊,侯佳彤,姜明梁,祝星星. 基于特征变量筛选的无人机多光谱遥感土壤含水量反演. 中国农村水利水电. 2024(05): 147-154 .
    5. 张成才,侯佳彤,王蕊,姜明梁,祝星星. 基于无人机多光谱与热红外数据的冬小麦土壤水分反演. 郑州大学学报(工学版). 2024(05): 111-118 .
    6. 程敬雅,景元书,薛晓萍,张继波,李楠,董智强,张玉双. 人工智能在现代农业气象领域应用的研究进展. 江西农业学报. 2024(07): 48-54 .
    7. 吴东丽,刘聪,郭超凡,丁明明,吴苏,阙艳红,姜明梁,李雁. 基于多源遥感数据与模型对比的冬小麦土壤含水量区域监测研究. 中国农学通报. 2024(25): 147-154 .
    8. 赵贵平,徐发俊. 基于无人机多光谱影像的农田土壤水分监测. 测绘通报. 2024(11): 177-182 .
    9. 陈潜. 基于高光谱数据的土壤含水量反演. 长江信息通信. 2024(12): 19-22 .
    10. 吴娟,何月红,黄涛,吕林涛,刘自增. 枸杞土壤含水量间接光谱估测模型. 安徽农业科学. 2023(11): 171-173+177 .
    11. 温积群,杨迁,王绍荃,赵勇. 基于深度强化学习的近程无人机数据采集方法研究. 自动化技术与应用. 2023(10): 121-124 .
    12. 严勇,余成,王颖,张志敏. 无人机多光谱遥感的水质参数反演研究. 海洋测绘. 2023(05): 67-72 .
    13. 胡炜杰,廖晓恬,黄丹颖,陈亚举,区晓阳. 红外技术在农产品安全领域的应用. 农产品质量与安全. 2022(02): 62-68 .
    14. 王钧,陆洲,罗明,徐飞飞,张序. 基于机载多光谱的冬小麦返青期土壤墒情反演. 浙江农业学报. 2022(06): 1297-1305 .
    15. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    16. 韩冷,何雄奎,王昌陵,刘亚佳,宋坚利,齐鹏,刘理民,李天,郑义,林桂海,周战,黄康,王忠,查海涅,张国山,周国涛,马勇,伏浩,聂宏远,曾爱军,张炜. 智慧果园构建关键技术装备及展望. 智慧农业(中英文). 2022(03): 1-11 .
    17. 马纬,武志明,温鑫伟,余科松. 遥感多光谱成像在解析土壤成分方面研究进展. 农业工程. 2022(11): 30-36 .
    18. 黄培峰,朱立学,陈家政. 农业无人机遥感技术研究进展. 机电产品开发与创新. 2021(03): 43-45 .
    19. 吕学研,张甦,张咏,尤佳艺,向一铭,郭仁庆,董圆媛. 无人机多光谱遥感在社渎港污染溯源中的应用. 水资源与水工程学报. 2021(03): 18-23 .
    20. 龙林丽,刘英,张旭阳,苏永东,陈孝杨. 无人机在矿区表土特征及地质灾害监测中的应用. 煤田地质与勘探. 2021(06): 200-211 .

    Other cited types(18)

Catalog

    Article views (821) PDF downloads (186) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return