• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHOU Xinran, ZHENG Tao, ZHANG Long. The Stability of Virus Dynamics Model with Beddington-DeAngelis Functional Response and Distributed Time Delay[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 118-123. DOI: 10.6054/j.jscnun.2020084
Citation: ZHOU Xinran, ZHENG Tao, ZHANG Long. The Stability of Virus Dynamics Model with Beddington-DeAngelis Functional Response and Distributed Time Delay[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 118-123. DOI: 10.6054/j.jscnun.2020084

The Stability of Virus Dynamics Model with Beddington-DeAngelis Functional Response and Distributed Time Delay

More Information
  • Received Date: January 20, 2020
  • Available Online: November 02, 2020
  • A class of virus dynamics model with Beddington-DeAngelis functional response and distributed delay is established on the basis of the common virus time delay model to describe the phenomenon of virus infection in cells more accurately. Firstly, the positivity and boundedness of the solution of the model are discussed, and the basic reproduction number R0 of the model is obtained. Then, the local and global stability of the infection-free equilibrium of the model are proved. Further, numerical simulations are demonstrated to verify the theoretical results.
  • [1]
    李盈科, 滕志东, 努尔别克·艾孜玛洪.时变多时滞连续系统的有限时间稳定性分析[J].新疆大学学报(自然科学版), 2016, 33(2):161-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201602006

    LI Y K, TENG Z D, NERBEK A. Finite-time stability of continuous-time systems with time-varying delays[J]. Journal of Xinjiang University(Natural Science Edition), 2016, 33(2):161-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201602006
    [2]
    许明星, 滕志东, 张龙.具有密度制约的非自治SIRS传染病模型的持久性与灭绝性[J].新疆大学学报(自然科学版), 2015, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201501007

    XU M X, TENG Z D, ZHANG L. Permanence and extinction for nonautonomous SIRS epidemic model with density dependence[J]. Journal of Xinjiang University(Natural Science Edition), 2015, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201501007
    [3]
    黑力军, 陈斯养.具有时滞三斑块扩散捕食模型的全局稳定性[J].工程数学学报, 2003, 20(4):129-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcsxxb200304026

    HEI L J, CHEN S Y. Global stability for a three-patch diffusion predator-prey model with time delays[J]. Journal of Engineering Mathematics, 2003, 20(4):129-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcsxxb200304026
    [4]
    MCCLUSKEY C C. Complete global stability for an SIR epidemic model with delay distributed or discrete[J]. Nonlinear Analysis:Real World Applications, 2010, 11(1):55-59. doi: 10.1016/j.nonrwa.2008.10.014
    [5]
    毛卫华.二阶非线性具时滞脉冲微分方程振动性[J].华南师范大学学报(自然科学版), 2002(1):47-53. http://journal-n.scnu.edu.cn/article/id/1092

    MAO W H. Oscillations of second-order nonlinear impulse differential equaitons with delays[J]. Journal of South China Normal University (Natural Science Edition), 2002(1):47-53. http://journal-n.scnu.edu.cn/article/id/1092
    [6]
    黄燕革, 姚晓洁, 黄勇.时间测度上具有Beddington-DeAngelis类功能反应和扩散的捕食系统的周期解[J].华南师范大学学报(自然科学版), 2010(4):19-26. http://journal-n.scnu.edu.cn/article/id/445

    HUANG Y G, YAO X J, HUANG Y. Periodic solutions for a class of predator-prey system on time scales with Beddington-DeAngelis functional response and diffusion[J]. Journal of South China Normal University (Natural Science Edition), 2010(4):19-26. http://journal-n.scnu.edu.cn/article/id/445
    [7]
    ANDERSON R M, MAY R M. The population dynamics of microparasites and their invertebrate hosts[J]. Philosophi-cal Transactions of the Royal Society:Series B, 1981, 291:451-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e8f990c1ce9ec8d24fa63ad4bf10950
    [8]
    NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent virus[J]. Science, 1996, 272:74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000000973303
    [9]
    HUANG G, MA W B, TAKEUCHI Y. Global properties for virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, 2009, 22:1690-1693. doi: 10.1016/j.aml.2009.06.004
    [10]
    HUANG G, MA W B, TAKEUCHI Y. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, 2011, 24:1199-1203. doi: 10.1016/j.aml.2011.02.007
    [11]
    XIAMIXINUER A, TENG Z D. Global dynamics in a he-roin epidemic model with different conscious stages and two distributed delays[J]. International Journal of Biomathematics, 2019, 12:1-19. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-biomathematics-english_thesis/0201275812541.html
    [12]
    JACK H. Theory of functional differential equations[M]. Berlin:Springer, 1977:36-42.
  • Cited by

    Periodical cited type(1)

    1. 宋冰,张育茹,桑媛,张龙. 具有饱和发生率和分布时滞的HIV免疫模型的稳定性. 广西师范大学学报(自然科学版). 2023(02): 106-117 .

    Other cited types(1)

Catalog

    Article views (871) PDF downloads (83) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return