Citation: | ZHOU Xinran, ZHENG Tao, ZHANG Long. The Stability of Virus Dynamics Model with Beddington-DeAngelis Functional Response and Distributed Time Delay[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 118-123. DOI: 10.6054/j.jscnun.2020084 |
[1] |
李盈科, 滕志东, 努尔别克·艾孜玛洪.时变多时滞连续系统的有限时间稳定性分析[J].新疆大学学报(自然科学版), 2016, 33(2):161-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201602006
LI Y K, TENG Z D, NERBEK A. Finite-time stability of continuous-time systems with time-varying delays[J]. Journal of Xinjiang University(Natural Science Edition), 2016, 33(2):161-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201602006
|
[2] |
许明星, 滕志东, 张龙.具有密度制约的非自治SIRS传染病模型的持久性与灭绝性[J].新疆大学学报(自然科学版), 2015, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201501007
XU M X, TENG Z D, ZHANG L. Permanence and extinction for nonautonomous SIRS epidemic model with density dependence[J]. Journal of Xinjiang University(Natural Science Edition), 2015, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdxxb201501007
|
[3] |
黑力军, 陈斯养.具有时滞三斑块扩散捕食模型的全局稳定性[J].工程数学学报, 2003, 20(4):129-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcsxxb200304026
HEI L J, CHEN S Y. Global stability for a three-patch diffusion predator-prey model with time delays[J]. Journal of Engineering Mathematics, 2003, 20(4):129-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcsxxb200304026
|
[4] |
MCCLUSKEY C C. Complete global stability for an SIR epidemic model with delay distributed or discrete[J]. Nonlinear Analysis:Real World Applications, 2010, 11(1):55-59. doi: 10.1016/j.nonrwa.2008.10.014
|
[5] |
毛卫华.二阶非线性具时滞脉冲微分方程振动性[J].华南师范大学学报(自然科学版), 2002(1):47-53. http://journal-n.scnu.edu.cn/article/id/1092
MAO W H. Oscillations of second-order nonlinear impulse differential equaitons with delays[J]. Journal of South China Normal University (Natural Science Edition), 2002(1):47-53. http://journal-n.scnu.edu.cn/article/id/1092
|
[6] |
黄燕革, 姚晓洁, 黄勇.时间测度上具有Beddington-DeAngelis类功能反应和扩散的捕食系统的周期解[J].华南师范大学学报(自然科学版), 2010(4):19-26. http://journal-n.scnu.edu.cn/article/id/445
HUANG Y G, YAO X J, HUANG Y. Periodic solutions for a class of predator-prey system on time scales with Beddington-DeAngelis functional response and diffusion[J]. Journal of South China Normal University (Natural Science Edition), 2010(4):19-26. http://journal-n.scnu.edu.cn/article/id/445
|
[7] |
ANDERSON R M, MAY R M. The population dynamics of microparasites and their invertebrate hosts[J]. Philosophi-cal Transactions of the Royal Society:Series B, 1981, 291:451-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e8f990c1ce9ec8d24fa63ad4bf10950
|
[8] |
NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent virus[J]. Science, 1996, 272:74-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000000973303
|
[9] |
HUANG G, MA W B, TAKEUCHI Y. Global properties for virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, 2009, 22:1690-1693. doi: 10.1016/j.aml.2009.06.004
|
[10] |
HUANG G, MA W B, TAKEUCHI Y. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, 2011, 24:1199-1203. doi: 10.1016/j.aml.2011.02.007
|
[11] |
XIAMIXINUER A, TENG Z D. Global dynamics in a he-roin epidemic model with different conscious stages and two distributed delays[J]. International Journal of Biomathematics, 2019, 12:1-19. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-biomathematics-english_thesis/0201275812541.html
|
[12] |
JACK H. Theory of functional differential equations[M]. Berlin:Springer, 1977:36-42.
|
1. |
宋冰,张育茹,桑媛,张龙. 具有饱和发生率和分布时滞的HIV免疫模型的稳定性. 广西师范大学学报(自然科学版). 2023(02): 106-117 .
![]() |