• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Cheng, LI Ming. The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 26-30. DOI: 10.6054/j.jscnun.2020074
Citation: ZHANG Cheng, LI Ming. The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 26-30. DOI: 10.6054/j.jscnun.2020074

The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility

More Information
  • Received Date: May 27, 2020
  • Available Online: November 02, 2020
  • The effect of the Rashba spin-orbital coupling on the spin susceptibility of an electronic system strongly correlated with a two-dimensional square lattice is studied. According to the linear response theory, spin susceptibility can be expressed with a retarded Green function. The equations of the spin susceptibility can be numerically solved with a random phase approximation and a Hartree-Fock approximation. The numerical results show that in the absence of spin-orbital coupling the static spin susceptibility Reχ( q ; ω=0) increases with the increase of the Coulomb interaction U and decreases with increasing temperature. The Coulomb interaction U and temperature T have similar effects on the dynamic susceptibility Reχ( q ; ω=0). When the spin orbital coupling is added into the system, the real part of the spin susceptibility χ( q ) shows a flat base around the q =0. The size of the flat base increases significantly with increasing VSO while the imaginary part ofχ( q ) shows a drastic fluctuation at the boundary of the flat base. Thus, this effect becomes a clear signature of the spin-orbital coupling of a system.
  • [1]
    HUBBARD J. Electron correlations in narrow energy bands[J]. Proceedings of the Royal Society of London A, 1963, 276:238-250. http://www.mendeley.com/research/electron-correlation-narrow-energy-bands/
    [2]
    STONER E C. Collective electron specific heat and spin paramagnetism in metals[J]. Proceedings of the Royal Society of London A, 1936, 154:656-678. http://adsabs.harvard.edu/abs/1936RSPSA.154..656S
    [3]
    HEISENBERG W. Zur theorie des ferromagnetismus[J]. Zeitschrift Fur Physik, 1928, 49:619-636. doi: 10.1007/BF01328601
    [4]
    KANE C L, MELE E J. Z2 topological order and the quantum spin hall effect[J]. Physical Review Letters, 2005, 95(14):146802/1-4. doi: 10.1103/PhysRevLett.95.146802
    [5]
    QI X L, ZHANG S C. Topological insulators and superconductors[J]. Review of Modern Physics, 2011, 83:1057/1-5. doi: 10.1103/RevModPhys.83.1057
    [6]
    DRESSELHAUS G. Spin-orbit coupling effects in zinc blende structures[J]. Physical Review, 1955, 100:580-586. doi: 10.1103/PhysRev.100.580
    [7]
    SAKURAI J J. Advanced Quantum Mechanics[D]. New Jersey: Addison-Wesley, 1980.
    [8]
    BYCHKOV Y A, RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of Physics C, 1984, 17:6039-6045. doi: 10.1088/0022-3719/17/33/015
    [9]
    RASHBA E I. Theory of electrical spin injection:tunnel contacts as a solution of the conductivity mismatch problem[J]. Physical Review B, 2000, 62:R16267-R16270. doi: 10.1103/PhysRevB.62.R16267
    [10]
    YOKOYAMA T, ONARI S, TANAKA Y. Enhanced triplet superconductivity in noncentrosymmetric systems[J]. Physical Review B, 2007, 75:172511/1-5. doi: 10.1103/PhysRevB.75.172511
    [11]
    YANASE Y, SIGRIST M. Superconductivity and magne-tism in non-centrosymmetric system:application to CePt3Si[J]. Journal of the Physical Society of Japan, 2008, 77:124711/1-5. doi: 10.1143/JPSJ.77.124711
    [12]
    GRECO A, SCHNYDER A P. Mechanism for unconventional superconductivity in the hole-doped Rashba-Hubbard model[J]. Physical Review Letters, 2018, 120:177002/1-5. doi: 10.1103/PhysRevLett.120.177002
    [13]
    YANASEA Y, JUJOB T, NOMURA T. Theory of superconductivity in strongly correlated electron systems[J]. Physics Reports, 2003, 387:1-149. doi: 10.1016/j.physrep.2003.07.002
    [14]
    DONIACH S, SONDHEIMER E H. Green's functions for solid state physicists[M]. London:The Ben-jamin/Cummings Publishing Company, Inc, 1982.
    [15]
    王怀玉.凝聚态物理中的格林函数理论[M].北京:科学岀版社, 2008.
    [16]
    李正中.固体理论[M]. 2版.北京:高等教育岀版社, 2002.
    [17]
    ROER A T, KREISEL A, EREMIN I. Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit:a numerical RPA study[J]. Physical Review B, 2015, 92(10):104505/1-11. doi: 10.1103/PhysRevB.92.104505
    [18]
    费特, 瓦立克.多粒子系统的量子理论[M].北京:科学岀版社, 1984.

Catalog

    Article views (759) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return