Citation: | LIAO Enhong, SHU Na, LI Jiawei, PANG Xiongwen. A Prediction Model of Cloud Server Performance Based on Temporal Convolutional Network[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 107-113. DOI: 10.6054/j.jscnun.2020068 |
[1] |
QIAN Q F, LI C L, ZHANG X Q. Survey of virtual resource management in cloud data center[J]. Application Research of Computers, 2012, 29(7):2411-2410. http://www.oalib.com/paper/1620927
|
[2] |
SONI G, KALRA M. A novel approach for load balancing in cloud data center[C]//Proceedings of 2014 IEEE International Advance Computing Conference. Gurgaon, India: IEEE, 2014: 807-812.
|
[3] |
TSENG F H, WANG X, CHOU L D, et al. Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm[J]. IEEE Systems Journal, 2017, 12(2):1688-1699. http://ieeexplore.ieee.org/document/7987741/
|
[4] |
SOFIE L, WARD V H, WILLEM V, et al. Worldwide electricity consumption of communication networks[J]. Optics Express, 2012, 20(26):513-524. doi: 10.1364/OE.20.00B513
|
[5] |
NI J C, BAI X L. A review of air conditioning energy performance in data centers[J]. Renewable & Sustainable Energy Reviews, 2017, 67:625-640. http://www.sciencedirect.com/science/article/pii/S136403211630541X
|
[6] |
DAYARATHNA M, WEN Y, FAN R. Data center energy consumption modeling:a survey[J]. Communications Surveys & Tutorials, 2016, 18(1):732-794. http://cn.bing.com/academic/profile?id=88dca82d314f40d06fda538a466330d5&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
TRAN V G, DEBUSSCHERE V, BACHA S. Data center energy consumption simulator from the servers to their cooling system[C]//Proceedings of 2013 IEEE Grenoble Conference. Grenoble, France: IEEE, 2014: 1-6.
|
[8] |
YANG Q P, PENG C L, ZHAO H, et al. A new method based on PSR and EA-GMDH for host load prediction in cloud computing system[J]. Journal of Supercomputing, 2014, 68(3):1402-1417. http://dl.acm.org/citation.cfm?id=2633499
|
[9] |
HUANG P J, YE D S, FAN Z W, et al. Discriminative model for Google host load prediction with rich feature set[C]// Proceedings of 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Shen-zhen: IEEE, 2015: 1193-1196.
|
[10] |
DI S, KONDO D, CIRNE W. Host load prediction in a Google compute cloud with a Bayesian model[C]//Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT: IEEE, 2012: 1-11.
|
[11] |
TIAN C J, MA J, ZHANG C H, et al. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network[J]. Energies, 2018, 11(12):3493/1-13. doi: 10.3390/en11123493
|
[12] |
YU Z Y, NIU Z W, TANG W H, et al. Deep learning for daily peak load forecasting-a novel gated recurrent neural network combining dynamic time warping[J]. IEEE Access, 2019, 7:17184-17194. doi: 10.1109/ACCESS.2019.2895604
|
[13] |
DI S, KONDO D, CIRNE W. Google hostload prediction based on Bayesian model with optimized feature combination[J]. Journal of Parallel and Distributed Computing, 2014, 74(1):1820-1832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=842ebbe0624a9345c7c356f71da52d91
|
[14] |
SONG B B, YU Y, ZHOU Y, et al. Host load prediction with long short-term memory in cloud computing[J]. The Journal of Supercomputing, 2018, 74(12):6554-6568. doi: 10.1007/s11227-017-2044-4
|
[15] |
YANG Q P, ZHOU Y, YU Y, et al. Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing[J]. The Journal of Supercomputing, 2015, 71(8):3037-3053. doi: 10.1007/s11227-015-1426-8
|
[16] |
RONG H G, ZHANG H M, XIAO S, et al. Optimizing ener-gy consumption for data centers[J]. Renewable and Sustainable Energy Reviews, 2016, 58:674-691. doi: 10.1016/j.rser.2015.12.283
|
[17] |
ZHU H, DAI H D, YANG S Z, et al. Estimating power consumption of servers using Gaussian Mixture model[C]//Proceedings of 2017 Fifth International Symposium on Computing and Networking. Aomori, Japan: IEEE, 2017: 427-433.
|
[18] |
LIU N, LIN X, WANG Y Z. Data center power management for regulation service using neural network-based power prediction[C]//Proceedings of 2017 18th International Symposium on Quality Electronic Design. Santa Clara: IEEE, 2017: 367-372.
|
[19] |
LI Y L, HU H, WEN Y G, et al. Learning-based power prediction for data centre operations via deep neural networks[C]//Proceedings of the 5th International Workshop on Energy Efficient Data Centres. New York: Association for Computing Machinery, 2016: 1-10.
|
[20] |
KUMAR J, SINGH A K. Workload prediction in cloud using artificial neural network and adaptive differential evolution[J]. Future Generation Computer Systems, 2018, 81:41-52. doi: 10.1016/j.future.2017.10.047
|
[21] |
BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J/OL]. arXiv, (2018-03-04)[2020-04-10]. https://arxiv.org/abs/1803.01271.
|
[22] |
RAUBER T, RVNGER G. Modeling the energy consumption for concurrent executions of parallel tasks[C]//Proceedings of the 14th Communications and Networking Symposium. Boston: ACM, 2011: 11-18.
|
[23] |
OORD A, DIELEMAN S, ZEN H, et al. Wavenet: a genera-tive model for raw audio[J/OL]. arXiv, (2016-09-19) [2020-04-10]. https://arxiv.org/abs/1609.03499.
|
[24] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J/OL]. arXiv, (2016-04-30) [2020-04-10]. https://arxiv.org/abs/1511.07122.
|
[25] |
SALIMANS T, KINGMA D P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of Neural Information Processing Systems. Barcelona, Spain, 2016: 901-909.
|
[26] |
Alibaba Inc. Cluster data collected from production clusters in Alibaba for cluster management research[DS/OL]. (2018-12-13)[2019-12-13]. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018.
|
[27] |
SMITH L N. Cyclical learning rates for training neural networks[C]//Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, California: IEEE, 2017: 464-472.
|