• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIAO Enhong, SHU Na, LI Jiawei, PANG Xiongwen. A Prediction Model of Cloud Server Performance Based on Temporal Convolutional Network[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 107-113. DOI: 10.6054/j.jscnun.2020068
Citation: LIAO Enhong, SHU Na, LI Jiawei, PANG Xiongwen. A Prediction Model of Cloud Server Performance Based on Temporal Convolutional Network[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 107-113. DOI: 10.6054/j.jscnun.2020068

A Prediction Model of Cloud Server Performance Based on Temporal Convolutional Network

More Information
  • Received Date: May 07, 2020
  • Available Online: March 21, 2021
  • Most of the current deep learning-based models for host performance prediction do not have universal applicability, cannot produce fair experimental data or accurately predict the energy consumption or performance peak point, and consume too much time. In order to solve these problems, an adaptive performance prediction mo-del based on Temporal Convolutional Network (ATCN Model) is proposed. In this model, CPU utilization is regarded as the measurement standard for host overload, N+1-dimension energy consumption vector is constructed with multi-dimensional performance index, and the relationship between the input vector and prediction standard is established. The convolution kernel size in TCN is adjusted and the expansion factor is increased continuously to achieve a long-term memory effect. The experimental results based on Alibaba cloud open-source data set show that the ATCN model has strong self-adaptability. Under different hardware configurations and resource usages, the prediction accuracy and efficiency are improved by about 20% compared with the LSTM prediction model.
  • [1]
    QIAN Q F, LI C L, ZHANG X Q. Survey of virtual resource management in cloud data center[J]. Application Research of Computers, 2012, 29(7):2411-2410. http://www.oalib.com/paper/1620927
    [2]
    SONI G, KALRA M. A novel approach for load balancing in cloud data center[C]//Proceedings of 2014 IEEE International Advance Computing Conference. Gurgaon, India: IEEE, 2014: 807-812.
    [3]
    TSENG F H, WANG X, CHOU L D, et al. Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm[J]. IEEE Systems Journal, 2017, 12(2):1688-1699. http://ieeexplore.ieee.org/document/7987741/
    [4]
    SOFIE L, WARD V H, WILLEM V, et al. Worldwide electricity consumption of communication networks[J]. Optics Express, 2012, 20(26):513-524. doi: 10.1364/OE.20.00B513
    [5]
    NI J C, BAI X L. A review of air conditioning energy performance in data centers[J]. Renewable & Sustainable Energy Reviews, 2017, 67:625-640. http://www.sciencedirect.com/science/article/pii/S136403211630541X
    [6]
    DAYARATHNA M, WEN Y, FAN R. Data center energy consumption modeling:a survey[J]. Communications Surveys & Tutorials, 2016, 18(1):732-794. http://cn.bing.com/academic/profile?id=88dca82d314f40d06fda538a466330d5&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    TRAN V G, DEBUSSCHERE V, BACHA S. Data center energy consumption simulator from the servers to their cooling system[C]//Proceedings of 2013 IEEE Grenoble Conference. Grenoble, France: IEEE, 2014: 1-6.
    [8]
    YANG Q P, PENG C L, ZHAO H, et al. A new method based on PSR and EA-GMDH for host load prediction in cloud computing system[J]. Journal of Supercomputing, 2014, 68(3):1402-1417. http://dl.acm.org/citation.cfm?id=2633499
    [9]
    HUANG P J, YE D S, FAN Z W, et al. Discriminative model for Google host load prediction with rich feature set[C]// Proceedings of 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Shen-zhen: IEEE, 2015: 1193-1196.
    [10]
    DI S, KONDO D, CIRNE W. Host load prediction in a Google compute cloud with a Bayesian model[C]//Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT: IEEE, 2012: 1-11.
    [11]
    TIAN C J, MA J, ZHANG C H, et al. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network[J]. Energies, 2018, 11(12):3493/1-13. doi: 10.3390/en11123493
    [12]
    YU Z Y, NIU Z W, TANG W H, et al. Deep learning for daily peak load forecasting-a novel gated recurrent neural network combining dynamic time warping[J]. IEEE Access, 2019, 7:17184-17194. doi: 10.1109/ACCESS.2019.2895604
    [13]
    DI S, KONDO D, CIRNE W. Google hostload prediction based on Bayesian model with optimized feature combination[J]. Journal of Parallel and Distributed Computing, 2014, 74(1):1820-1832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=842ebbe0624a9345c7c356f71da52d91
    [14]
    SONG B B, YU Y, ZHOU Y, et al. Host load prediction with long short-term memory in cloud computing[J]. The Journal of Supercomputing, 2018, 74(12):6554-6568. doi: 10.1007/s11227-017-2044-4
    [15]
    YANG Q P, ZHOU Y, YU Y, et al. Multi-step-ahead host load prediction using autoencoder and echo state networks in cloud computing[J]. The Journal of Supercomputing, 2015, 71(8):3037-3053. doi: 10.1007/s11227-015-1426-8
    [16]
    RONG H G, ZHANG H M, XIAO S, et al. Optimizing ener-gy consumption for data centers[J]. Renewable and Sustainable Energy Reviews, 2016, 58:674-691. doi: 10.1016/j.rser.2015.12.283
    [17]
    ZHU H, DAI H D, YANG S Z, et al. Estimating power consumption of servers using Gaussian Mixture model[C]//Proceedings of 2017 Fifth International Symposium on Computing and Networking. Aomori, Japan: IEEE, 2017: 427-433.
    [18]
    LIU N, LIN X, WANG Y Z. Data center power management for regulation service using neural network-based power prediction[C]//Proceedings of 2017 18th International Symposium on Quality Electronic Design. Santa Clara: IEEE, 2017: 367-372.
    [19]
    LI Y L, HU H, WEN Y G, et al. Learning-based power prediction for data centre operations via deep neural networks[C]//Proceedings of the 5th International Workshop on Energy Efficient Data Centres. New York: Association for Computing Machinery, 2016: 1-10.
    [20]
    KUMAR J, SINGH A K. Workload prediction in cloud using artificial neural network and adaptive differential evolution[J]. Future Generation Computer Systems, 2018, 81:41-52. doi: 10.1016/j.future.2017.10.047
    [21]
    BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J/OL]. arXiv, (2018-03-04)[2020-04-10]. https://arxiv.org/abs/1803.01271.
    [22]
    RAUBER T, RVNGER G. Modeling the energy consumption for concurrent executions of parallel tasks[C]//Proceedings of the 14th Communications and Networking Symposium. Boston: ACM, 2011: 11-18.
    [23]
    OORD A, DIELEMAN S, ZEN H, et al. Wavenet: a genera-tive model for raw audio[J/OL]. arXiv, (2016-09-19) [2020-04-10]. https://arxiv.org/abs/1609.03499.
    [24]
    YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J/OL]. arXiv, (2016-04-30) [2020-04-10]. https://arxiv.org/abs/1511.07122.
    [25]
    SALIMANS T, KINGMA D P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of Neural Information Processing Systems. Barcelona, Spain, 2016: 901-909.
    [26]
    Alibaba Inc. Cluster data collected from production clusters in Alibaba for cluster management research[DS/OL]. (2018-12-13)[2019-12-13]. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018.
    [27]
    SMITH L N. Cyclical learning rates for training neural networks[C]//Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, California: IEEE, 2017: 464-472.
  • Cited by

    Periodical cited type(4)

    1. 宋继勐,周春雷,沈子奇,余晗,张伟阳,林兵. 基于TCN-GRU的Handle标识解析系统负载均衡算法. 福建师范大学学报(自然科学版). 2024(02): 64-73 .
    2. 张颖. 基于大数据的云数据中心智能运维系统. 软件导刊. 2024(11): 153-157 .
    3. 李泉,靳萌萌,聂晓杰. 基于J2EE架构的民航信息基础架构云平台设计. 计算机测量与控制. 2023(07): 192-198 .
    4. 孔荫莹,柯锐恺,胡亚美,杨舟. 基于股票各板块内部的单向自适应图神经网络的股价预测模型. 华南师范大学学报(自然科学版). 2023(04): 100-107 .

    Other cited types(4)

Catalog

    Article views (939) PDF downloads (77) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return