Citation: | ZENG Yongquan, ZHANG Peng. Measuring the Efficiency of Mean-VaR Portfolio Selection with Real Constraints[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 95-103. DOI: 10.6054/j.jscnun.2020066 |
[1] |
MARKOWITZ H. Portfolio selection[J]. Journal of Finance, 1952, 7:77-91. doi: 10.2307/2975974
|
[2] |
SIMKOWITZ M, BEEDLES W. Diversification in a three moment world[J]. Journal of Financial and Quantitative Analysis, 1978, 13:927-941. doi: 10.2307/2330635
|
[3] |
JORION P. Value at risk:the new Benchmark for controlling derivatives risk[M]. New York:McGraw-Hill, 1997.
|
[4] |
ALEXANDRE G, BAPTISA A. Economic implications of using mean-VaR model for portfolio selection:a comparison with mean-VaRiance analysis[J]. Journal of Economic Dynamic and Control, 2002, 26:1159-1193. doi: 10.1016/S0165-1889(01)00041-0
|
[5] |
ALEXANDRE G, BAPTISA A. Portfolio performance eva-luation using value at risk[J]. The Journal of Portfolio Management, 2003, 29:93-102. doi: 10.3905/jpm.2003.319898
|
[6] |
张鹏.不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J].中国管理科学, 2008, 16(4):30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005
ZHANG P. The comparison between mean-variance and mean-VaR portfolio models without short sales[J]. Chinese Journal of Management Science, 2008, 16(4):30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005
|
[7] |
BABAZADEH H, ESFAHANIPOUR A. A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost[J]. Journal of Computational and Applied Mathematics, 2019, 361:313-342. doi: 10.1016/j.cam.2018.10.039
|
[8] |
姚海祥, 李仲飞.不同借贷利率下的投资组合选择——基于均值和VaR的效用最大化模型[J].系统工程理论与实践, 2009, 29(1):22-29. doi: 10.3321/j.issn:1000-6788.2009.01.004
YAO H X, LI Z F. Portfolio selection with different bo-rrowing-lending rates:utility maximization model based on mean and VaR[J]. Systems Engineering — Theory & Practice, 2009, 29(1):22-29. doi: 10.3321/j.issn:1000-6788.2009.01.004
|
[9] |
DENG X, LI R J. A portfolio selection model with borro-wing constraint based on possibility theory[J]. Applied Soft Computing, 2012, 12:754-758. doi: 10.1016/j.asoc.2011.10.017
|
[10] |
BEST M J, HLOUSKOVA J. An algorithm for portfolio optimization with variable transaction costs, part 2:computational analysis[J]. Journal of Optimization Theory and Applications, 2007, 135(3):531-547. doi: 10.1007/s10957-007-9249-2
|
[11] |
GAO J J, LI D, CUI X Y, et al. Time cardinality constrained mean-variance dynamic portfolio selection and market ti-ming:a stochastic control approach[J]. Automatica, 2015, 54:91-99. doi: 10.1016/j.automatica.2015.01.040
|
[12] |
CUI X T, ZHENG X J, ZHU S S, et al. Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems[J]. Journal of Global Optimization, 2013, 56:1409-1423. doi: 10.1007/s10898-012-9842-2
|
[13] |
LIU Y J, ZHANG W G, WANG J B. Multi-period cardinality constrained portfolio selection models with interval coefficients[J]. Annals of Operations Research, 2016, 244(2):545-569. doi: 10.1007/s10479-016-2117-4
|
[14] |
CHARNES A, COOPER W W, RHODES E. Measuring the effciency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444. doi: 10.1016/0377-2217(78)90138-8
|
[15] |
EDIRISINGHE N C P, ZHANG X. Generalized DEA model of fundamental analysis and its application to portfolio optimization[J]. Journal of Banking & Finance, 2007, 31(11):3311-3335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6b31517878ece3f992d3b9db0a5aa23
|
[16] |
LAMB J D, TEE K H. Data envelopment analysis models of investment funds[J]. European Journal of Operational Research, 2012, 216(3):687-696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=712f56a41685243b8aaece13151a6f8e
|
[17] |
BRANDA M. Diversification-consistent data envelopment analysis with general deviation measures[J]. European Journal of Operational Research, 2013, 226(3):626-635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54430015158f9d67b884c575aa2e269b
|
[18] |
LIM S, OH K W, ZHU J. Use of DEA cross-efficiency evaluation in portfolio selection:an application to Korean stock market[J]. European Journal of Operational Research, 2014, 236(1):361-368. http://cn.bing.com/academic/profile?id=0cefe1de79ac39b0e45920a82a064269&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
周忠宝, 丁慧, 马超群, 等.考虑交易成本的投资组合效率估计方法[J].中国管理科学, 2015, 23(1):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglkx201501004
ZHOU Z B, DING H, MA C Q, et al. Technical efficiency evaluation approach for portfolios with transaction costs[J]. Chinese Journal of Management Science, 2015, 23(1):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglkx201501004
|
[20] |
BRANDOUY O, KERSTENS K, WOESTYNE I V. Frontier-based vs. traditional mutual fund ratings:a first backtesting analysis[J]. European Journal of Operational Research, 2015, 242(1):332-342. http://cn.bing.com/academic/profile?id=f87960abf43ca2529bade6ce98cd455f&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
MASHAYEKHI Z, OMRANI H. An integrated multi-objective Markowitz-DEA cross-efficiency model with fuzzy returns for portfolio selection problem[J]. Applied Soft Computing, 2016, 38:1-9. doi: 10.1016/j.asoc.2015.09.018
|
[22] |
张鹏, 张忠桢.不允许卖空情况下M-VaR和M-SA投资组合比较研究[J].中国管理科学, 2008, 16(S1):263-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1002322631
ZHANG P, ZHANG Z Z. The achievement comparison between mean-VaR and mean semi-absolute deviation portfolio without short sales[J]. Chinese Journal of Management Science, 2008, 16(S1):263-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1002322631
|
[23] |
刘勇军, 张卫国, 徐维军.考虑现实约束的模糊多准则投资组合优化模型[J].系统工程理论与实践, 2013, 33(10):2462-2470. doi: 10.12011/1000-6788(2013)10-2462
LIU Y J, ZHANG W G, XIU W J. Fuzzy multiple criteria portfolio selection optimization model under real constrains[J]. Systems Engineering—Theory & Practice, 2013, 33(10):2462-2470. doi: 10.12011/1000-6788(2013)10-2462
|
[24] |
MOREY M R, MOREY R C. Mutual fund performance appraisals:a multi-horizon perspective with endogenous benchmarking[J]. Omega, 1999, 27:241-258. doi: 10.1016/S0305-0483(98)00043-7
|
[25] |
LIU W B, ZHOU Z B, LIU D B, et al. Estimation of portfolio efficiency via DEA[J]. Omega, 2015, 52:107-118. doi: 10.1016/j.omega.2014.11.006
|