• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZENG Yongquan, ZHANG Peng. Measuring the Efficiency of Mean-VaR Portfolio Selection with Real Constraints[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 95-103. DOI: 10.6054/j.jscnun.2020066
Citation: ZENG Yongquan, ZHANG Peng. Measuring the Efficiency of Mean-VaR Portfolio Selection with Real Constraints[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 95-103. DOI: 10.6054/j.jscnun.2020066

Measuring the Efficiency of Mean-VaR Portfolio Selection with Real Constraints

More Information
  • Received Date: June 26, 2019
  • Available Online: March 21, 2021
  • A mean-VaR model with the transaction costs, borrowing constraints, threshold constraints and cardinality constraints is proposed. As it is very difficult to solve the proposed model, the practical use of the model is limited. So the mean-VaR portfolio DEA performance evaluation model with real constraints is proposed. By constructing the frontier of the DEA model to approximate the real frontier, the efficiency evaluation of the constructed portfolio performance evaluation model is carried out. Finally, the weekly stock trading data of Shanghai stock market is used for empirical research. The results show that as the sample size increases, the frontier of the DEA is closer to the real frontier.
  • [1]
    MARKOWITZ H. Portfolio selection[J]. Journal of Finance, 1952, 7:77-91. doi: 10.2307/2975974
    [2]
    SIMKOWITZ M, BEEDLES W. Diversification in a three moment world[J]. Journal of Financial and Quantitative Analysis, 1978, 13:927-941. doi: 10.2307/2330635
    [3]
    JORION P. Value at risk:the new Benchmark for controlling derivatives risk[M]. New York:McGraw-Hill, 1997.
    [4]
    ALEXANDRE G, BAPTISA A. Economic implications of using mean-VaR model for portfolio selection:a comparison with mean-VaRiance analysis[J]. Journal of Economic Dynamic and Control, 2002, 26:1159-1193. doi: 10.1016/S0165-1889(01)00041-0
    [5]
    ALEXANDRE G, BAPTISA A. Portfolio performance eva-luation using value at risk[J]. The Journal of Portfolio Management, 2003, 29:93-102. doi: 10.3905/jpm.2003.319898
    [6]
    张鹏.不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J].中国管理科学, 2008, 16(4):30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005

    ZHANG P. The comparison between mean-variance and mean-VaR portfolio models without short sales[J]. Chinese Journal of Management Science, 2008, 16(4):30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005
    [7]
    BABAZADEH H, ESFAHANIPOUR A. A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost[J]. Journal of Computational and Applied Mathematics, 2019, 361:313-342. doi: 10.1016/j.cam.2018.10.039
    [8]
    姚海祥, 李仲飞.不同借贷利率下的投资组合选择——基于均值和VaR的效用最大化模型[J].系统工程理论与实践, 2009, 29(1):22-29. doi: 10.3321/j.issn:1000-6788.2009.01.004

    YAO H X, LI Z F. Portfolio selection with different bo-rrowing-lending rates:utility maximization model based on mean and VaR[J]. Systems Engineering — Theory & Practice, 2009, 29(1):22-29. doi: 10.3321/j.issn:1000-6788.2009.01.004
    [9]
    DENG X, LI R J. A portfolio selection model with borro-wing constraint based on possibility theory[J]. Applied Soft Computing, 2012, 12:754-758. doi: 10.1016/j.asoc.2011.10.017
    [10]
    BEST M J, HLOUSKOVA J. An algorithm for portfolio optimization with variable transaction costs, part 2:computational analysis[J]. Journal of Optimization Theory and Applications, 2007, 135(3):531-547. doi: 10.1007/s10957-007-9249-2
    [11]
    GAO J J, LI D, CUI X Y, et al. Time cardinality constrained mean-variance dynamic portfolio selection and market ti-ming:a stochastic control approach[J]. Automatica, 2015, 54:91-99. doi: 10.1016/j.automatica.2015.01.040
    [12]
    CUI X T, ZHENG X J, ZHU S S, et al. Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems[J]. Journal of Global Optimization, 2013, 56:1409-1423. doi: 10.1007/s10898-012-9842-2
    [13]
    LIU Y J, ZHANG W G, WANG J B. Multi-period cardinality constrained portfolio selection models with interval coefficients[J]. Annals of Operations Research, 2016, 244(2):545-569. doi: 10.1007/s10479-016-2117-4
    [14]
    CHARNES A, COOPER W W, RHODES E. Measuring the effciency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444. doi: 10.1016/0377-2217(78)90138-8
    [15]
    EDIRISINGHE N C P, ZHANG X. Generalized DEA model of fundamental analysis and its application to portfolio optimization[J]. Journal of Banking & Finance, 2007, 31(11):3311-3335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6b31517878ece3f992d3b9db0a5aa23
    [16]
    LAMB J D, TEE K H. Data envelopment analysis models of investment funds[J]. European Journal of Operational Research, 2012, 216(3):687-696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=712f56a41685243b8aaece13151a6f8e
    [17]
    BRANDA M. Diversification-consistent data envelopment analysis with general deviation measures[J]. European Journal of Operational Research, 2013, 226(3):626-635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54430015158f9d67b884c575aa2e269b
    [18]
    LIM S, OH K W, ZHU J. Use of DEA cross-efficiency evaluation in portfolio selection:an application to Korean stock market[J]. European Journal of Operational Research, 2014, 236(1):361-368. http://cn.bing.com/academic/profile?id=0cefe1de79ac39b0e45920a82a064269&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    周忠宝, 丁慧, 马超群, 等.考虑交易成本的投资组合效率估计方法[J].中国管理科学, 2015, 23(1):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglkx201501004

    ZHOU Z B, DING H, MA C Q, et al. Technical efficiency evaluation approach for portfolios with transaction costs[J]. Chinese Journal of Management Science, 2015, 23(1):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgglkx201501004
    [20]
    BRANDOUY O, KERSTENS K, WOESTYNE I V. Frontier-based vs. traditional mutual fund ratings:a first backtesting analysis[J]. European Journal of Operational Research, 2015, 242(1):332-342. http://cn.bing.com/academic/profile?id=f87960abf43ca2529bade6ce98cd455f&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    MASHAYEKHI Z, OMRANI H. An integrated multi-objective Markowitz-DEA cross-efficiency model with fuzzy returns for portfolio selection problem[J]. Applied Soft Computing, 2016, 38:1-9. doi: 10.1016/j.asoc.2015.09.018
    [22]
    张鹏, 张忠桢.不允许卖空情况下M-VaR和M-SA投资组合比较研究[J].中国管理科学, 2008, 16(S1):263-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1002322631

    ZHANG P, ZHANG Z Z. The achievement comparison between mean-VaR and mean semi-absolute deviation portfolio without short sales[J]. Chinese Journal of Management Science, 2008, 16(S1):263-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1002322631
    [23]
    刘勇军, 张卫国, 徐维军.考虑现实约束的模糊多准则投资组合优化模型[J].系统工程理论与实践, 2013, 33(10):2462-2470. doi: 10.12011/1000-6788(2013)10-2462

    LIU Y J, ZHANG W G, XIU W J. Fuzzy multiple criteria portfolio selection optimization model under real constrains[J]. Systems Engineering—Theory & Practice, 2013, 33(10):2462-2470. doi: 10.12011/1000-6788(2013)10-2462
    [24]
    MOREY M R, MOREY R C. Mutual fund performance appraisals:a multi-horizon perspective with endogenous benchmarking[J]. Omega, 1999, 27:241-258. doi: 10.1016/S0305-0483(98)00043-7
    [25]
    LIU W B, ZHOU Z B, LIU D B, et al. Estimation of portfolio efficiency via DEA[J]. Omega, 2015, 52:107-118. doi: 10.1016/j.omega.2014.11.006

Catalog

    Article views (674) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return