Citation: | YAN Renliang, LIANG Yongshu, ZHOU Guohong, XIA Li, LIN Li, ZHOU Daiying. Differentially Expressed Genes in Flavonoid Biosynthesis and Transcriptome of Citrus Grandis 'Tomentosa' and Citrus Grandis (L.) Osbeck[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 71-78. DOI: 10.6054/j.jscnun.2020063 |
[1] |
李晓光, 林励, 陈志霞.化州柚与柚的性状及组织显微鉴别[J].中药材, 2002, 25(6):401-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc200206010
LI X G, LIN L, CHEN Z X. Descriptions and microscopy identification of Citrus grandis var. tomentosa hort. and Citrus grandis Osbeck[J]. Journal of Chinese Medicinal Materials, 2002, 25(6):401-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc200206010
|
[2] |
邬龙怡, 胡珊, 杨志业, 等. SCoT分子标记对不同品种化橘红的亲缘关系分析[J].现代中药研究与实践, 2018, 32(6):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jczyzz201806004
WU L Y, HU S, YANG Z Y, et al. Study on the genetic relationship of exocarpium Citrus grandis by SCoT molecular markers[J]. Research and Practice on Chinese Medicines, 2018, 32(6):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jczyzz201806004
|
[3] |
田静, 庞一波, 陈嘉景, 等.化州柚种质资源的SSR分析及其果实不同发育期柚皮苷含量变化[J].华中农业大学学报, 2019, 38(5):64-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hznydx201905009
TIAN J, PANG Y B, CHEN J J, et al. SSR analyses of germplasm resources and changes of naringin content at different developmental stages of Citrus grandis 'Tomentosa' fruit[J]. Journal of Huazhong Agricultural University, 2019, 38(5):64-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hznydx201905009
|
[4] |
芦海生, 李婷, 姜丹, 等.基于DNA条形码、UPLC及色度学方法鉴定与评价化橘红[J].中国中药杂志, 2019, 44(20):4419-4425. http://www.cnki.com.cn/Article/CJFDTotal-ZGZY201920021.htm
LU H S, LI T, JIANG D, et al. Identification and evaluation of Citrus grandis based on DNA barcode, UPLC and chromaticity method[J]. China Journal of Chinese Materia Medica, 2019, 44(20):4419-4425. http://www.cnki.com.cn/Article/CJFDTotal-ZGZY201920021.htm
|
[5] |
YU E A, KIM G S, LEE J E, et al. Flavonoid profiles of immature and mature fruit tissues of Citrus grandis Osbeck (Dangyuja) and overall contribution to the antioxidant effect[J]. Biomedical Chromatography, 2015, 29(4):590-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/bmc.3496
|
[6] |
YU X, CAO J P, LUO F L, et al. Simultaneous purification of limonin, nomilin and isoobacunoic acid from pomelo fruit (Citrus grandis) segment membrane[J]. Journal of Food Science, 2014, 79(10):C1956-1963. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/1750-3841.12581
|
[7] |
LI P L, LIU M H, HU J H, et al. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 90:167-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4751754292e0dc23e9802119520aaed
|
[8] |
WANG P X, BO F, ZHAO Q Y, et al. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties[J]. Food Chemistry, 2014, 161:230-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5cef4e95686653b34bafe29b03176dd4
|
[9] |
陈昭, 张靖年, 陈伟韬, 等. UHPLC-MS-MS同时测定化橘红中3个影响PXR-CYP3A4调控血脂成分[J].辽宁中医药大学学报, 2020, 22(1):54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnzyxyxb202001017
CHEN Z, ZHANG J N, CHEN W T, et al. Simultaneous determination of three active compounds with PXR-CYP3A4 mediated lipid regulatory effect in Citrus grandis tomentosa[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2020, 22(1):54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnzyxyxb202001017
|
[10] |
ZHANG M, NAN H, WANG Y, et al. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China[J]. Molecules, 2014, 19(11):17314-17328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=molecules-19-17314
|
[11] |
林励, 李向明, 万建义, 等.化橘红药材质量评价、监测与应用研究[J].中国现代中药, 2010, 12(8):21-26;36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201008006
LIN L, LI X M, WAN J Y, et al. Quality evaluation, monitoring and application study of the medicinal material Citrus grandis 'Tomentosa'[J]. Modern Chinese Medicine, 2010, 12(8):21-26;36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201008006
|
[12] |
文海涛, 赵红英, 林励, 等.化橘红黄酮类生物合成中功能基因的克隆与序列分析[J].中药材, 2010, 33(11):1686-1689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc201011005
WEN H T, ZHAO H Y, LI L, et al. Cloning and sequence analysis on functional genes of flavonoid biosynthesis in Citrus grandis 'Tomentosa'[J]. Journal of Chinese Medicinal Materials, 2010, 33(11):1686-1689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyc201011005
|
[13] |
LI J, MA L, ZHANG S, et al. Transcriptome analysis of 1- and 3-year-old Panax notoginseng roots and functional characterization of saponin biosynthetic genes DS and CYP716A47-like[J]. Planta, 2019, 249(4):1229-1237. https://pubmed.ncbi.nlm.nih.gov/30607503/
|
[14] |
FABIO P, ALESSANDRO V, VITULO N, et al. The leaf transcriptome of fennel (Foeniculum vulgare Mill.) enables characterization of the t-anethole pathway and the discovery of microsatellites and single-nucleotide variants[J]. Scientific Reports, 2018, 8:10459/1-12. https://www.nature.com/articles/s41598-018-28775-2
|
[15] |
DENG Y, ZHENG H, YAN Z, et al. Full-length transcriptome survey and expression analysis of Cassia obtusifolia to discover putative genes related to aurantio-obtusin biosynthesis, seed formation and development, and stress response[J]. International Journal of Molecular Sciences, 2018, 19:2476/1-30.
|
[16] |
AN H Q, ZHU Q K, PEI W, et al. Whole-transcriptome selection and evaluation of internal reference genes for expression analysis in protocorm development of Dendrobium officinale Kimura et Migo[J]. Plos One, 2016, 11(11):e0163478/1-19. https://pubmed.ncbi.nlm.nih.gov/27814359/
|
[17] |
WANG X, CHEN D, WANG Y, et al. De Novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita[J]. PLoS One, 2015, 10(4):e0124560/1-18. https://pubmed.ncbi.nlm.nih.gov/25860891/
|
[18] |
LIN W J, HUANG W, NING S J, et al. De Novo characterization of the Baphicacanthus cusia (Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism[J]. PLoS One, 2018, 13(7):e0199788/1-15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033399/
|
[19] |
YU G, ZHOU Y, YU J, et al. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis[J]. Scientific Reports, 2019, 9:10035/1-11. https://www.nature.com/articles/s41598-019-46414-2
|
[20] |
LIN W J, SUN F L, ZHANG Y M, et al. Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics[J]. Scientific Reports, 2019, 9:12310/1-12. https://www.researchgate.net/publication/335352950_Comparative_transcriptome_and_metabolite_profiling_of_four_tissues_from_Alisma_orientale_Sam_Juzep_reveals_its_inflorescence_developmental_and_medicinal_characteristics
|
[21] |
LIU Y Y, CHEN X R, WANG J P, et al. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J]. BMC Plant Biology, 2019, 19:487/1-16. https://www.researchgate.net/publication/337179865_Transcriptomic_analysis_reveals_flavonoid_biosynthesis_of_Syringa_oblata_Lindl_in_response_to_different_light_intensity
|
[22] |
PENG X, WU H, CHEN H, et al. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress[J]. BMC Genomics, 2019, 20:687/1-15.
|
[23] |
CHEN K, HU Z M, SONG W, et al. Diversity of O-Glycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis[J]. ACS Synthetic Biology, 2019, 8(8):1858-1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e22b797fa590af26a4de2357f42f9723
|
[24] |
YUE J Y, ZHU C X, ZHOU Y, et al. Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'[J]. Scientific Reports, 2018, 8(1):715-766. https://pubmed.ncbi.nlm.nih.gov/30194355/
|
[25] |
CHEN Z X, LIU G H, TANG N, et al. Transcriptome analysis reveals molecular signatures of luteoloside accumulation in senescing leaves of Lonicera macranthoides[J]. International Journal of Molecular Sciences, 2018, 19:1012/1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ijms-19-01012
|
[26] |
GUO D D, LIU F, TU Y H, et al. Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis[J]. PLoS One, 2016, 11(7):e0158159/1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004675386
|
[27] |
SAVITA B, VASUNDHARA T, JAGDEEP K, et al. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis[J]. Genomics, 2019, 111(6):1474-1482. https://www.onacademic.com/detail/journal_1000040866870210_3fe7.html
|
[28] |
YUN Z, JIN S, DING Y D, et al. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage[J]. Journal of Experimental Botany, 2012, 63(8):2873-2893. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b4013a64aa0c30396df8964a4928b21
|
[29] |
LIANG M, YANG X, LI H, et al. De Novo transcriptome assembly of pummelo and molecular marker development[J]. PLoS One, 2015, 10(3):e0120615/1-20. https://pubmed.ncbi.nlm.nih.gov/25799271/
|
[30] |
GUO F, YU H W, XU Q, et al. Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis)[J]. BMC Plant Biology, 2015, 15:44/1-12. doi: 10.1186/s12870-015-0435-3
|
[31] |
LIN W J, HUANG W, NING S J, et al. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremekand differentially expressed genes involved in tryptophan biosynthesis[J]. PLoS One, 2019, 14(3):e0212863/1-17.
|
[32] |
LIU S Q, LI W S, WU Y M, et al. De Novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids[J]. PLoS One, 2013, 8(1):e48156/1-8. https://europepmc.org/articles/PMC3551913
|
[33] |
CHEN J F, DONG X, LI Q, et al. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling[J]. BMC Genomics, 2013, 14:857/1-13. doi: 10.1186/1471-2164-14-857
|
[34] |
GAO M P, ZHANG S W, LUO C, et al. Transcriptome analysis of starch and sucrose metabolism across bulb development in Sagittaria sagittifolia[J]. Gene, 2018, 649:99-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=446959ab3cb62cc3e45fc3a2df159fc8
|
[35] |
YU R G, XU L, ZHANG W, et al. De Novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7:585/1-12. https://core.ac.uk/reader/82834243
|