Citation: | SU Honglin, YANG Jinglian, GAO Min, WEN Yuyang, LIANG Qiuyi, GUO Hualei, ZHANG Minmin, OU Zhenjie, LIU Cong, XU Bingjia. The Synthesis of Phenothiazine Derivatives with Mechanofluorochromism Property and the Fluorescence Detection for 2, 4, 6-trinitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 50-56. DOI: 10.6054/j.jscnun.2020060 |
[1] |
ZHAO Q A, LI F Y, HUANG C H. Phosphorescent chemosensors based on heavy-metal complexes[J]. Chemical Society Reviews, 2010, 39(8):3007-3030. doi: 10.1039/b915340c
|
[2] |
XIANG H F, CHENG J H, MA X F, et al. Near-infrared phosphorescence:materials and applications[J]. Chemical Society Reviews, 2013, 42(14):6128-6185. doi: 10.1039/c3cs60029g
|
[3] |
COSTA R D, ORTI E, BOLINK H J. Recent advances in light-emitting electrochemical cells[J]. Pure and Applied Chemistry, 2011, 83(12):2115-2128. doi: 10.1351/PAC-CON-11-07-20
|
[4] |
JIA J H, ZHANG Y, XUE P C, et al. Synthesis of dendri-tic triphenylamine derivatives for dye-sensitized solar cellss[J]. Dyes and Pigments, 2013, 96(2):407-413. doi: 10.1016/j.dyepig.2012.09.015
|
[5] |
ZHAO Q, HUANG C H, LI F Y. Phosphorescent heavy-metal complexes for bioimaging[J]. Chemical Society Reviews, 2011, 40(5):2508-2524. doi: 10.1039/c0cs00114g
|
[6] |
LUO J D, XIE Z L, LAN J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18:1740-1741. https://pubs.rsc.org/en/content/articlelanding/2001/cc/b105159h
|
[7] |
LU Q Y, LI X F, LI J, et al. Influence of cyano groups on the properties of piezofluorochromic aggregation-induced emission enhancement compounds derived from tetraphenylvinyl-capped ethane[J]. Journal of Materials Chemistry C, 2015, 3(6):1225-1234. doi: 10.1039/C4TC02165G
|
[8] |
WANG Y, GAO K, LI J, et al. Synthesis and characterization of a Cd compound for selectively sensing of nitro-explosives[J]. Inorganic Chemistry Communications, 2018, 96:189-193. doi: 10.1016/j.inoche.2018.07.039
|
[9] |
BAGHERI N, KHATAEE A, HASSANZADEH J, et al. Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite[J]. Journal of Hazardous Materials, 2018, 360:233-242. doi: 10.1016/j.jhazmat.2018.08.013
|
[10] |
PENG Y, ZHANG A J, DONG M, et al. A colorimetric and fluorescent chemosensor for the detection of an explosive-2, 4, 6-trinitrophenol (TNP) [J]. Chemical Communications, 2011, 47(15):4505-4507. doi: 10.1039/c1cc10400d
|
[11] |
WYMAN J F, SERVE M P, HOBSON D W, et al. Acute toxicity, distribution, and metabolism of 2, 4, 6-trinitrophenol (picric acid) in Fischer 344 rats[J]. Journal of Toxicology Environmental Health, 1992, 37(2):313-327. doi: 10.1080/15287399209531672
|
[12] |
KOSE M, KIRPIK H, KOSE A. Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates[J]. Journal of Molecular Structure, 2019, 1185:369-378. doi: 10.1016/j.molstruc.2019.03.003
|
[13] |
UDHAYAKUMARI D, VELMATHI S, VENKATESAN P, et al. A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid[J]. Analytical Methods, 2015, 7(3):1161-1166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=362568a3ebf6604d49bcf1f6ad9d220b
|
[14] |
PRAMANIK S, BHALLA V, KUMAR M. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid[J]. Analytica Chimica Acta, 2013, 793:99-106. doi: 10.1016/j.aca.2013.07.023
|
[15] |
VENKATRAMAIAH N, KUMAR S, PATIL S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics[J]. Chemical Communications, 2012, 48(41):5007-5009. doi: 10.1039/c2cc31606d
|
[16] |
AN Z F, ZHENG C, CHEN R F, et al. Exceptional blueshifted and enhanced aggregation-induced emission of conjugated asymmetric triazines and their applications in superamplified detection of explosives[J]. Chemistry, 2012, 18(49):15655-15661. doi: 10.1002/chem.201202337
|
[17] |
SALINAS Y, MARTÍNEZ-MÁÑEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012, 41(3):1261-1296. doi: 10.1039/C1CS15173H
|
[18] |
FENG H T, WANG J H, ZHENG Y S. CH3-π interaction of explosives with cavity of a TPE macrocycle:the key cause for highly selective detection of TNT[J]. ACS Applied Materials Interfaces, 2014, 6(22):20067-20074. doi: 10.1021/am505636f
|
[19] |
FUJIYAMA-NOVAK J H, GADDAM C K, DAS D, et al. Detection of explosives by plasma optical emission spectroscopy[J]. Sensors and Actuators B:Chemical, 2013, 176:985-993. doi: 10.1016/j.snb.2012.08.063
|
[20] |
ZHANG Z, CHEN S, SHI R, et al. A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives:a new strategy for the mask-free discrimination of TNT and TNP within same sample[J]. Talanta, 2017, 166:228-233. doi: 10.1016/j.talanta.2017.01.046
|
[21] |
SUN M, WANG S, YANG Q, et al. A new colorimetric fluorescent sensor for ratiometric detection of cyanide in solution, test strips, and in cells[J]. RSC Advances, 2014, 4(16):8295-8299. doi: 10.1039/c3ra46741d
|