• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Jian, ZENG Taishan. The Multilevel Augmentation Method for Solving Time Fractional Subdiffusion Equation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 106-110. DOI: 10.6054/j.jscnun.2020051
Citation: CHEN Jian, ZENG Taishan. The Multilevel Augmentation Method for Solving Time Fractional Subdiffusion Equation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 106-110. DOI: 10.6054/j.jscnun.2020051

The Multilevel Augmentation Method for Solving Time Fractional Subdiffusion Equation

More Information
  • Received Date: January 13, 2020
  • Available Online: March 21, 2021
  • Based on L1 formula and the multiscale Galerkin method, a fully-discrete scheme is proposed for solving time fractional subdiffusion equations with α order Caputo fractional derivative. The existence and uniqueness of the solution of the fully-discrete scheme are proved, and the optimal convergence order O(hr+ τ 2-α) is also deduced, where r is the order of piecewise polynomials. A multilevel augmentation method (MAM) is developed to solve the linear systems resulting from the fully-discrete scheme at each time step, and MAM preserves the optimal convergence order. A numerical experiment is presented at last to show the validity of the theoretical analysis.
  • [1]
    KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M].Amsterdam:Elsevier, 2006.
    [2]
    刘发旺, 庄平辉, 刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社, 2015.
    [3]
    ZHUANG P H, LIU F W. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics Computing, 2006, 22(3):87-99. doi: 10.1007-BF02832039/
    [4]
    JI C C, SUN Z Z. The high-order compact numerical algorithms for the two-dimensional fractional subdiffusion equation[J]. Applied Mathematics and Computation, 2015, 269:775-791. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d7eedc38b49765c63fe86f73fe4c7bd
    [5]
    REN J C, MAO S P, ZHANG J W. Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation[J]. Numerical Methods for Partial Differential Equations, 2018, 34(2):705-730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/num.22226
    [6]
    ZENG F H, LI C P, LIU F W, et al. Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy[J]. SIAM Journal on Scientific Computing, 2015, 37(1):A55-A78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0ca5d268d6264c9f060cf12e172e31b
    [7]
    ROOP J P. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2[J]. Journal of Computational and Applied Mathematics, 2006, 193:243-268.
    [8]
    ZHAO Z G, LI C P. Fractional difference/finite element approximations for the time space fractional telegraph equation[J]. Applied Mathematics and Computation, 2012, 219:2975-2988. http://cn.bing.com/academic/profile?id=1d9585f5b67028738e127b90e64c1df5&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    CARELLA A R, DORAO C A. Least-squares spectral method for the solution of a fractional advection-dispersion equation[J]. Journal of Computational Physics, 2013, 232:33-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34d74032c04e005befd4b78e31549a89
    [10]
    LI X J, XU C J. A space-time spectral method for the time fractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2009, 47:2108-2131. http://cn.bing.com/academic/profile?id=45c4c1b0fd2ada0312bc53ac5d01f303&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    PEDAS A, TAMME E. On the convergence of spline co-llocation methods for solving fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(12):3502-3514. https://www.sciencedirect.com/science/article/pii/S0377042711000823
    [12]
    PODLUBNY I, CHECHKIN A, SKOVRANEK T, et al. Matrix approach to discrete fractional calculus Ⅱ:partial fractional differential equations[J]. Journal of Computational Physics, 2009, 228:3137-3153. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0811.1355
    [13]
    CHEN Z Y, WU B, XU Y S. Multilevel augmentation me-thods for operator equations[J]. Numerical Mathematics:A Journal of Chinese Universities, 2005, 14:31-55.
    [14]
    CHEN Z Y, WU B, XU Y S. Multilevel augmentation me-thods for differential equations[J]. Advances in Computational Mathematics, 2006, 24:213-238. https://www.researchgate.net/publication/220390842_Multilevel_augmentation_methods_for_differential_equations
    [15]
    CHEN Z Y, MICCHELLI C A, XU Y S. Multiscale me-thods for Fredholm integral equations[M]. Cambridge:Cambridge University Press, 2015.
  • Cited by

    Periodical cited type(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 .

    Other cited types(0)

Catalog

    Article views (1459) PDF downloads (91) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return