Citation: | CHEN Jian, ZENG Taishan. The Multilevel Augmentation Method for Solving Time Fractional Subdiffusion Equation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 106-110. DOI: 10.6054/j.jscnun.2020051 |
[1] |
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M].Amsterdam:Elsevier, 2006.
|
[2] |
刘发旺, 庄平辉, 刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社, 2015.
|
[3] |
ZHUANG P H, LIU F W. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics Computing, 2006, 22(3):87-99. doi: 10.1007-BF02832039/
|
[4] |
JI C C, SUN Z Z. The high-order compact numerical algorithms for the two-dimensional fractional subdiffusion equation[J]. Applied Mathematics and Computation, 2015, 269:775-791. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d7eedc38b49765c63fe86f73fe4c7bd
|
[5] |
REN J C, MAO S P, ZHANG J W. Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation[J]. Numerical Methods for Partial Differential Equations, 2018, 34(2):705-730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/num.22226
|
[6] |
ZENG F H, LI C P, LIU F W, et al. Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy[J]. SIAM Journal on Scientific Computing, 2015, 37(1):A55-A78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0ca5d268d6264c9f060cf12e172e31b
|
[7] |
ROOP J P. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2[J]. Journal of Computational and Applied Mathematics, 2006, 193:243-268.
|
[8] |
ZHAO Z G, LI C P. Fractional difference/finite element approximations for the time space fractional telegraph equation[J]. Applied Mathematics and Computation, 2012, 219:2975-2988. http://cn.bing.com/academic/profile?id=1d9585f5b67028738e127b90e64c1df5&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
CARELLA A R, DORAO C A. Least-squares spectral method for the solution of a fractional advection-dispersion equation[J]. Journal of Computational Physics, 2013, 232:33-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34d74032c04e005befd4b78e31549a89
|
[10] |
LI X J, XU C J. A space-time spectral method for the time fractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2009, 47:2108-2131. http://cn.bing.com/academic/profile?id=45c4c1b0fd2ada0312bc53ac5d01f303&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
PEDAS A, TAMME E. On the convergence of spline co-llocation methods for solving fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(12):3502-3514. https://www.sciencedirect.com/science/article/pii/S0377042711000823
|
[12] |
PODLUBNY I, CHECHKIN A, SKOVRANEK T, et al. Matrix approach to discrete fractional calculus Ⅱ:partial fractional differential equations[J]. Journal of Computational Physics, 2009, 228:3137-3153. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0811.1355
|
[13] |
CHEN Z Y, WU B, XU Y S. Multilevel augmentation me-thods for operator equations[J]. Numerical Mathematics:A Journal of Chinese Universities, 2005, 14:31-55.
|
[14] |
CHEN Z Y, WU B, XU Y S. Multilevel augmentation me-thods for differential equations[J]. Advances in Computational Mathematics, 2006, 24:213-238. https://www.researchgate.net/publication/220390842_Multilevel_augmentation_methods_for_differential_equations
|
[15] |
CHEN Z Y, MICCHELLI C A, XU Y S. Multiscale me-thods for Fredholm integral equations[M]. Cambridge:Cambridge University Press, 2015.
|
1. |
李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
![]() | |
2. |
达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 .
![]() |