• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Xiaoyang, TANG Jing, LIU Wei, XIAO Xin, NAN Junmin. The Quantum Chemistry Calculation of the Iron Scale Cleaning Performance of Ethylenediaminetetraacetic Acid and Ethylenediaminetetramethylenephosphonic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 35-41. DOI: 10.6054/j.jscnun.2020041
Citation: ZHAO Xiaoyang, TANG Jing, LIU Wei, XIAO Xin, NAN Junmin. The Quantum Chemistry Calculation of the Iron Scale Cleaning Performance of Ethylenediaminetetraacetic Acid and Ethylenediaminetetramethylenephosphonic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 35-41. DOI: 10.6054/j.jscnun.2020041

The Quantum Chemistry Calculation of the Iron Scale Cleaning Performance of Ethylenediaminetetraacetic Acid and Ethylenediaminetetramethylenephosphonic Acid

More Information
  • Received Date: December 10, 2019
  • Available Online: March 21, 2021
  • The molecular geometry, orbit and steric hindrance of the complexes of Fe(EDTA)-and Fe(EDTMP)- were calculated using the B3LYP method of density functional theory. The DEF2-TZVP basis set was used for all atoms and water was used as the solvent. The reasons for the difference in dissolving scale ability were analyzed. The results show that the complex is a low-spin six-coordinate octahedral structure. The binding energy of EDTA to Fe3+ ions is greater than that of EDTMP. The delocalized π bond of the carboxylic acid group of EDTA strengthens the electron delocalization of coordination bonds for complexes, which makes the covalent interaction of Fe(EDTA)- coordination bond stronger than that of Fe(EDTMP)-, whereas the phosphonic acid group of EDTMP has only σ bond. The steric hindrance effect between phosphonic acid groups of Fe(EDTMP)- is also not conducive to the combination of EDTMP and Fe3+ ion.
  • [1]
    吴雅倩, 白利勇, 黄明丽, 等. EDTA及其结构异构体在环境中的应用综述[J].环境工程, 2019, 37(8):159-163. http://d.old.wanfangdata.com.cn/Periodical/hjgc201908029

    WU Y Q, BAI L Y, HUANG M L, et al. Review on application of EDTA and its structural isomers in the environment[J]. Environmental Engineering, 2019, 37(8):159-163. http://d.old.wanfangdata.com.cn/Periodical/hjgc201908029
    [2]
    芮瑞, 顿小宝.新建机组三压式余热锅炉EDTA低温法化学清洗[J].清洗世界, 2019, 35(2):5-7. http://d.old.wanfangdata.com.cn/Periodical/hxqx201902001
    [3]
    赵晓洋, 李姗珊, 苏明阳, 等.常用水处理剂用于化学清洗的分子结构探讨[J].分子科学学报, 2015, 31(4):276-282. http://d.old.wanfangdata.com.cn/Periodical/fzkxxb201504003

    ZHAO X Y, LI S S, SU M Y, et al. The study on molecular structures of common water treatment agents used for chemical cleaning[J]. Journal of Molecular Science, 2015, 31(4):276-282. http://d.old.wanfangdata.com.cn/Periodical/fzkxxb201504003
    [4]
    MATOVIĆ Z D, JEREMIĆ M S, JELIĆ R M, et al. Configurational, LFDFT and NBO analysis of chromium(Ⅲ) complexes of edta-type ligands[J]. Polyhedron, 2013, 55:131-143.
    [5]
    GAJEWSKI M, KLOBUKOWSKI M. DFT studies of complexes between ethylenediamine tetraacetate and alkali and alkaline earth cations[J]. Canadian Journal of Chemistry, 2009, 87:1492-1498. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5657623326fcadae70052d85532d8977
    [6]
    SMENTEK L, HESS B A. Conformational analysis of Eu(Ⅲ)-(Ethylenedinitrilo)tetrakis(methylphosphonates)(EDTMP)[J]. Collection of Czechoslovak Chemical Communications, 2008, 73(11):1437-1456.
    [7]
    YANG Y, PUSHIE M J, COOPER D M L, et al. Structural Characterization of SmⅢ(EDTMP)[J]. Molecular Pharmaceutics, 2015, 12(11):4108-4114. http://europepmc.org/abstract/MED/26437889
    [8]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16, Revision B.01[CP]. Gaussian, Inc: Wallingford CT, 2016. http://gaussian.com.
    [9]
    LU T, CHEN F W. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592. http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr201205006
    [10]
    HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J].Journal of Molecular Graphics, 1996, 14(1):33-38. http://d.old.wanfangdata.com.cn/Periodical/jdq200504018
    [11]
    HARDING D J, HARDING P, PHONSRI W. Spin crossover in iron (Ⅲ) complexes[J]. Coordination Chemistry Reviews, 2016, 313:38-61.
    [12]
    DAPPRICH S, FRENKING G. Investigation of donor-acceptor interactions:a charge decomposition analysis using fragment molecular orbitals[J]. The Journal of Physical Chemistry, 1995, 99(23):9352-9362. http://cn.bing.com/academic/profile?id=4e62b0a381123ab22fc432bcf840ff81&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    JOHNSON E R, KEINAN S, MORI-SÁNCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18):6498-6506. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229268481/
    [14]
    BADER R F W. A quantum theory of molecular structure and its applications[J]. Chemical Reviews, 1991, 91(5):893-928. http://cn.bing.com/academic/profile?id=586766a160e06f5b7381864de5f0de8b&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    CREMER P D D, KRAKA E. Chemical bonds without bonding electron density-does the difference electron-density analysis suffice for a description of the chemical bond[J]. Angewandte Chemie International Edition, 1984, 23(8):627-628. http://cn.bing.com/academic/profile?id=96ccee419abc18b8439ed747d72b7c46&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    ESPINOSA E, ALKORTA I, ELGUERO J, et al. From weak to strong interactions:a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-HF-Y systems[J]. Journal of Chemical Physics, 2002, 117(12):5529-5542. doi: 10.1063/1.1501133
    [17]
    徐艳, 章小慧, 徐志广, 等.取代基和配体的负离子效应对(TPFC)Mn(Ⅴ)O轴向配位作用的影响[J].华南师范大学学报(自然科学版), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006

    XU Y, ZHANG X H, XU Z G. Effects of substituents and anionic ligands on axial coordination of (TPFC)Mn(V)O[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1):28-34. doi: 10.6054/j.jscnun.2019006
  • Cited by

    Periodical cited type(12)

    1. 黎明杰,蒋彬,郭晋川,潘越,蒋然,廖玉宏,张晓红,朱新海,陈子龙. 我国南方桉树人工林区水体泛黑物质分子组成及形成机理. 湖泊科学. 2024(04): 1069-1082 .
    2. 王娟,黄婷婷,赵辉,刘晓林,金平伟,史燕东. 华南典型林分迹地植被覆盖变化对土壤侵蚀的影响分析. 人民珠江. 2024(08): 48-56 .
    3. 孝惠爽,赵杰,傅声雷. 华南典型尾叶桉纯林经营对土壤理化性质、微生物和线虫群落的影响. 生态学报. 2023(19): 7963-7973 .
    4. 韦振道,伍琪,任世奇. 桉树人工林地表水土流失研究现状. 桉树科技. 2022(04): 63-68 .
    5. 任世奇,陈健波,朱原立,苏福聪,韦振道,伍琪. 尾巨桉人工林小流域降水产流特征分析. 生态环境学报. 2021(02): 305-312 .
    6. 朱雅,李一平,罗凡,李荣辉,黄列,程一鑫,蒋裕丰. 我国南方桉树人工林区水库沉积物污染物的分布特征及迁移规律. 环境科学. 2020(05): 2247-2256 .
    7. 蔡远松. 林木采伐作业对水土保持的影响及应对措施探讨. 亚热带水土保持. 2020(02): 51-52 .
    8. 李一平,罗凡,李荣辉,郭晋川. 桉树人工林区水体泛黑机理研究进展. 河海大学学报(自然科学版). 2019(05): 393-401 .
    9. 王一佩,薛雨,杨钙仁,苏晓琳,武鹏帅,温志良,邓羽松. 林道修建和采伐作业对桉树人工林土壤侵蚀的影响. 水土保持研究. 2019(06): 1-6 .
    10. 朱群华,钟昌琴,谌建宇,刘钢,赖后伟,宁寻安. 水源地桉树人工林林区水体潜在风险浅析. 净水技术. 2017(08): 26-31 .
    11. 赵庆,钱万惠,严俊,唐洪辉. 珠三角地区森林景观改造研究——以展旗岗森林景观改造为例. 林业与环境科学. 2016(04): 92-97 .
    12. 李相林,谢华,彭波,谢洲,杨瑞刚. 速生桉种植中氮素对饮用水源地水质的影响. 南方农业学报. 2016(11): 1849-1855 .

    Other cited types(1)

Catalog

    Article views (1003) PDF downloads (79) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return