A Study of the Excited-State Charge Transfer of Corrole-Phenothiazine Dyads Based on the Density Functional Theory
-
-
Abstract
The density functional theory (DFT) was used to investigate the ground-state and excited-state properties, including optimized geometry, frontier molecular orbital, electron-hole distribution and absorption spectra of the donor-acceptor systems formed by corrole and phenothiazine (F10C-PTZ). The effect of spacer and substituent position on charge transfer excitation was discussed in detail. The results showed that in the F10C-PTZ dyads exist excited states of charge transfer characterized by donor (PTZ) and acceptor (corrole) features. Carbon-carbon single bond of the spacer will hinder donor-acceptor charge transfer, while carbon-carbon double bond in spacer will enhance the conjugation of the system and facilitate donor-acceptor excitation charge transfer. When the donor group PTZ is in close to the pentafluorophenyl group on corrole ring, it will also promote the donor-acceptor excitation charge transfer.
-
-