• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Jiarun, YU Baoxian, WANG Jianying, ZHANG Han. A DNN-Based Channel Estimation Method for Spectral Efficient Frequency Division Multiplexing Systems[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 17-21. DOI: 10.6054/j.jscnun.2020038
Citation: CHEN Jiarun, YU Baoxian, WANG Jianying, ZHANG Han. A DNN-Based Channel Estimation Method for Spectral Efficient Frequency Division Multiplexing Systems[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 17-21. DOI: 10.6054/j.jscnun.2020038

A DNN-Based Channel Estimation Method for Spectral Efficient Frequency Division Multiplexing Systems

More Information
  • Received Date: September 20, 2019
  • Available Online: March 21, 2021
  • A channel estimation method based on deep neural network (DNN) for spectral efficient frequency division multiplexing (SEFDM) systems is proposed. The method employs uniform spaced orthogonal pilot symbols to achieve the channel estimation. To be specific, the received pilot signals are used as the input of the four-layer DNN in order to extract the channel features. Simulation results show that the proposed scheme can yield a smaller mean square error (MSE) and, in turn, perform better demodulation in comparison with the conventional least square (LS) method. In particular, the DNN-based method is more robust to the number of pilots, which indicates its superiority.
  • [1]
    YU B X, GUO C J, YI L Y, et al. 150-Gb/s SEFDM IM/DD transmission using log-MAP Viterbi decoding for short reach optical links[J]. Optics Express, 2018, 26(24):31075-31084. doi: 10.1364/OE.26.031075
    [2]
    张涵, 郭昌霖, 李家明, 等.基于混合导频辅助的大规模MI-MO上行链路信道估计[J].华南师范大学学报(自然科学版), 2016, 48(6):57-62. http://journal-n.scnu.edu.cn/article/id/3882

    ZHANG H, GUO C L, LI J M, et al. Hybrid pilot-aided channel estimation in massive MIMO uplink[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(6):57-62. http://journal-n.scnu.edu.cn/article/id/3882
    [3]
    RODRIGUES M, DARWAZWH I. A spectrally efficient frequency division multiplexing based communications system[C]//2003 Proceedings of the international OFDM workshop. Hamburg: IEEE, 2003: 48-49.
    [4]
    NOPCHINDA D, XU T, MAHER R, et al. Dual polarization coherent optical spectrally efficient frequency division multiplexing[J]. Photonics Technology Letters, 2016, 28(1):83-86. doi: 10.1109/LPT.2015.2485669
    [5]
    YU B X, ZHANG H, HONG X D, et al. Channel equalisation and data detection for SEFDM over frequency selective fading channels[J]. IET Communications, 2018, 12:2315-2323. doi: 10.1049/iet-com.2018.5114
    [6]
    CHORTI A, KANARAS I, RODRIGUES M R, et al. Joint channel equalization and detection of spectrally efficient FDM signals[C]//2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Commiunications(PIMRC). Blacksburg: IEEE, 2010: 177-182.
    [7]
    ISAM S, DARWAZEH I. Robust channel estimation for spectrally efficient FDM system[C]//2012 19th International Conference on Telecommunication(ICT). New York: IEEE, 2010: 177-182.
    [8]
    YU T, ZHAO M, ZHONG J, et al. Low-complexity graph-based turbo equalization for single-carrier FTN signaling[J]. IET Signal Processing, 2017, 11(7):838-845. doi: 10.1049/iet-spr.2016.0251
    [9]
    GHANNAM H, DARWAZEH I. Robust channel estimation methods for spectrally efficient FDM systems[C]//2018 IEEE 87th Vehicular Technology Conference(VTC Spring). New York: IEEE, 2018: 1-6.
    [10]
    YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 7(1):114-117. http://cn.bing.com/academic/profile?id=c5b0bb6adf4ec51f581a49298f347364&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    WANG X, GAO L, MAO S, et al. CSI-based fingerprinting for indoor localization:a deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1):763-776. http://cn.bing.com/academic/profile?id=e1379d28a7ae970be05f46d29233fd93&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    CHEN S, GIBSON G J, COWN C F N, et al. Adaptive equalization of finite non-linear channels using multilayer perceptrons[J]. Signal Processing, 1990, 20(2):107-119. https://www.sciencedirect.com/science/article/pii/016516849090122F
    [13]
    NACHMANI E, BEERY Y, BURSHTEIN D. Learning to decode linear codes using deep learning[C]//54th Annual Allerton Conference on Communication, Control Computing. New York: IEEE, 2016: 341-346.
    [14]
    MAZO J E. Faster-than-nyquist signaling[J]. Bell System Technical Journal, 1975, 54(8):1451-1462. doi: 10.1002/j.1538-7305.1975.tb02043.x
    [15]
    YU B X, ZHANG H, DAI X H. A low-complexity demodulation technique for spectrally efficient FDM systems using decision-feedback[J]. IET Communications, 2017, 11:2386-2392. doi: 10.1049/iet-com.2017.0069
    [16]
    SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. doi: 10.1016/j.neunet.2014.09.003
    [17]
    GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//International Conference on Artificial Intelligence and Statistics. Sardinia: Journal of Machine Learning Research, 2010: 249-256.
  • Cited by

    Periodical cited type(4)

    1. 赵玉帛,赵宏伟. 人口流动视角下京津冀城市群经济联系研究. 燕山大学学报(哲学社会科学版). 2021(01): 82-89 .
    2. 孙武,沈子桐,欧阳睿康,孙靓,乔志强,朱琳琳,陈翔. 广州市主城区建筑立体形态的圈层分异及其影响因素. 华南师范大学学报(自然科学版). 2021(02): 73-83 .
    3. 郑仰成,黎丽莉,王云鹏. 基于多特征参数的OMI遥感产品气溶胶分类研究——以广东省为例. 华南师范大学学报(自然科学版). 2021(04): 68-75 .
    4. 李军,刘举庆,游林,俞艳,张晓盼,董恒. 时空大数据支持的土地储备智能决策体系与应用研究. 中国土地科学. 2019(09): 111-120 .

    Other cited types(0)

Catalog

    Article views (1070) PDF downloads (93) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return