• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HUANG Guofu, WANG Miao, WANG Mianmian, SONG Jimei, LIU Haijian. Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 53-59. DOI: 10.6054/j.jscnun.2020027
Citation: HUANG Guofu, WANG Miao, WANG Mianmian, SONG Jimei, LIU Haijian. Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 53-59. DOI: 10.6054/j.jscnun.2020027

Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles

  • Pd/Fe nanoparticles are considered effective agents for the degradation of halogenated organic compounds (HOCs). However, the high hydrophobicity of tetrabromobisphenol A (TBBPA) hinders its degradation owing to the inefficient contacts of TBBPA and Pd/Fe nanoparticles. To promote the degradation of TBBPA, the effects of different surfactants on TBBPA degradation with PAC-Pd/Fe nanoparticles were investigated. The results show that the anionic surfactant SDS had the best promoting effect on TBBPA degradation and the rate of reaction increased by 1.7-2.5 times. The nonionic surfactant TX-100 had little enhancement in TBBPA degradation. It even exerted an inhibitive effect as its concentration went above the critical micelle concentration. The cationic surfactant CTAB displayed the most inhibitive effect on TBBPA degradation, and the inhibition was stronger as the surfactant concentration increased. The degradation of TBBPA with PAC-Pd/Fe nanoparticles was a consecutive debromination reaction. The corresponding degradation rate constants of parent TBBPA and its intermediates tri-BBPA, di-BBPA and mono-BBPA were 0.466 2, 0.435 6, 0.338 0 and 0.271 1 min-1, respectively, which were proportional to the amount of bromide atoms on benzene rings.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return