• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HUANG Yufei. Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 91-99. DOI: 10.6054/j.jscnun.2020014
Citation: HUANG Yufei. Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 91-99. DOI: 10.6054/j.jscnun.2020014

Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices

More Information
  • Received Date: January 24, 2019
  • Available Online: March 21, 2021
  • In view of the special effects of "loop" in the study of structural index problems, two classes of special generalized signed digraphs are defined: primitive non-powerful generalized signed digraphs with intersecting cycles structure and that with distinguished intersecting cycles structure, respectively. With restriction on primitive non-powerful generalized signed digraphs with intersecting cycles structure and those with distinguished intersecting cycles structure, upper bounds on the structural indices, e.g. kth local τ-base, kth same τ-base, kth lower τ-base, kth upper τ-base and ω-indecomposable base, are discussed by imitating the digraphs, analyzing the ambiguous reachable set and using the properties of Frobenius numbers, respectively.
  • [1]
    柳柏濂.组合矩阵论[M].北京:科学出版社, 2005.
    [2]
    LI Z S, HALL F, ESCHENBACH C. On the period and base of a sign pattern matrix[J]. Linear Algebra and its Applications, 1994, 212/213:101-120. doi: 10.1016/0024-3795(94)90398-0
    [3]
    LIU B L, YOU L H. Bounds on the base of primitive nearly reducible sign pattern matrices[J]. Linear Algebra and its Applications, 2006, 418:863-881. doi: 10.1016/j.laa.2006.03.024
    [4]
    YOU L H, SHAO J Y, SHAN H Y. Bounds on the bases of irreducible generalized sign pattern matrices[J]. Linear Algebra and its Applications, 2007, 427:285-300. doi: 10.1016/j.laa.2007.07.019
    [5]
    HUANG Y F, LIU B L, CHEN S Y. The generalized τ-bases of primitive non-powerful signed digraphs with d loops[J]. Graphs and Combinatorics, 2012, 28:227-242. doi: 10.1007/s00373-011-1036-z
    [6]
    黄宇飞, 柳柏濂.本原不可幂符号矩阵的完全不可分基指数[J].华南师范大学学报(自然科学版), 2016, 48(4):88-94. doi: 10.6054/j.jscnun.2016.05.038

    HUANG Y F, LIU B L. Fully indecomposable bases of primitive non-powerful sign pattern matrices[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(4):88-94. doi: 10.6054/j.jscnun.2016.05.038
    [7]
    柳柏濂, 黄宇飞.组合矩阵的结构指数[M].北京:科学出版社, 2015.
    [8]
    黄宇飞, 柳柏濂.组合矩阵的结构指数——组合矩阵指数的系统化[J].数学进展, 2016, 45(2):161-175. http://d.old.wanfangdata.com.cn/Conference/8986853

    HUANG Y F, LIU B L. Structural indices of combinatorial matrix——the systematization of combinatorial matrix indices[J]. Advances in Mathematics, 2016, 45(2):161-175. http://d.old.wanfangdata.com.cn/Conference/8986853
    [9]
    LI Q, LIU B L. Bounds on the kth multi-g base index of nearly reducible sign pattern matrices[J]. Discrete Mathe-matics, 2008, 308:4846-4860. doi: 10.1016/j.disc.2007.09.004
    [10]
    WANG L Q, MIAO Z K, YAN C. Local bases of primitive non-powerful signed digraphs[J]. Discrete Mathematics, 2009, 309:748-754. doi: 10.1016/j.disc.2008.01.012
    [11]
    GAO Y B, SHAO Y L, SHEN J. Bounds on the local bases of primitive nonpowerful nearly reducible sign patterns[J]. Linear and Multilinear Algebra, 2009, 57(2):205-215. doi: 10.1080/03081080701763433
    [12]
    LIANG C H, LIU B L, HUANG Y F. The kth lower bases of primitive non-powerful signed digraphs[J]. Linear Algebra and its Applications, 2010, 432:1680-1690. doi: 10.1016/j.laa.2009.11.023
    [13]
    SHAO Y L, SHEN J, GAO Y B. The kth upper bases of primitive non-powerful signed digraphs[J]. Discrete Mathematics, 2009, 309:2682-2686. doi: 10.1016/j.disc.2008.06.039
    [14]
    BONDY J A, MURTY U S R. Graph theory with applications[M]. London:The Macmillan Press Ltd, 1976.
    [15]
    LIU B L. On fully indecomposable exponent for primitive Boolean matrices with symmetric ones[J]. Linear and Multilinear Algebra, 1992, 31(1/2/3/4):131-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03081089208818129
  • Cited by

    Periodical cited type(1)

    1. 王正家,曾雨晴,徐欣犀,徐佑犀,王超. 基于多传感器的机器人夹取系统研究. 机床与液压. 2023(11): 27-33 .

    Other cited types(0)

Catalog

    Article views (1931) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return