• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHU Ning, LUO Hui, ZHANG Kai, LIU Qiong, WANG Yang. The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 9-16. DOI: 10.6054/j.jscnun.2020003
Citation: ZHU Ning, LUO Hui, ZHANG Kai, LIU Qiong, WANG Yang. The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 9-16. DOI: 10.6054/j.jscnun.2020003

The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide

More Information
  • Received Date: September 16, 2019
  • Available Online: March 21, 2021
  • Solutions to mode separation and crossing of vertically distributed multi-modes inside silicon nanophotonic integrated devices are investigated. Mode demultiplexers based on both echelle gratings and asymmetric directional couplers are demonstrated. A device with curved reflectors which allows multi-modes to cross simultaneously is also designed. The simulation results based on the 3D Finite-Difference Time-Domain methods show that the echelle grating allows altogether 9 channels of different modes and wavelengths to be separated with crosstalks no more than -30 dB. The curved reflectors works properly for crossings of three modes, and the crosstalks are merely around -40 dB.
  • [1]
    TKACH R W. Scaling optical communications for the next decade and beyond[J]. Bell Labs Technical Journal, 2010, 14(4):3-9. doi: 10.1002/bltj.20400
    [2]
    ESSIAMBRE R J, KRAMER G, WINZER P J, et al. Capacity limits of optical fiber network[J]. IEEE Journal of Lightwave Technolnology, 2010, 28:662-701. doi: 10.1109/JLT.2009.2039464
    [3]
    YE M, YU Y, ZOU J, et al. On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing[J]. Optics Letters, 2014, 4:758-761. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232191167/
    [4]
    CHEN K X, WANG S Y, CHEN S T, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array[J]. Optics Letters, 2015, 40:4655-4658. doi: 10.1364/OL.40.004655
    [5]
    SALSI M, KOEBELE C, SPERT D, et al. Mode-division multiplexing of 2×100 Gb/s channels using an LCOS-based spatial modulator[J]. IEEE Journal of Lightwave Technolnology, 2012, 30:618-623. doi: 10.1109/JLT.2011.2178394
    [6]
    DING Y, XU J, DA F, et al. On-chip two-mode division multiplexing using tapered directional coupler-basedmode multiplexer and demultiplexer[J]. Optics Express, 2013, 21:10376-10382. doi: 10.1364/OE.21.010376
    [7]
    BAI N, IP E, HUANG Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20:2668-2680. doi: 10.1364/OE.20.002668
    [8]
    DRISCOLL J B, CHEN C P, GROTE R R, et al. A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel[J]. Optics Express, 2014, 22:18543-18555. doi: 10.1364/OE.22.018543
    [9]
    DAI D. Silicon-based Multi-channel Mode (de)multiplexer for on-chip optical Interconnects[C]//Integrated Photonics Research, Silicon and Nanophotonics. Piscataway: IEEE Photonics Society, 2014.
    [10]
    LUO L W, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5:3069/1-7. doi: 10.1038/ncomms4069
    [11]
    DAI D, LI C L, WANG S P, et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 2018, 12(1):1700109/1-12.
    [12]
    DAI D. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects[J]. Optics Express, 2014, 22:27524-27534. doi: 10.1364/OE.22.027524
    [13]
    DRISCOLL J B, CHEN C P, GROTE R R, et al. A 60-Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel[J]. Optics Express, 2014, 22:18543-18555. doi: 10.1364/OE.22.018543
    [14]
    CHEN W, WANG P, YANG J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions[J]. Optics Express, 2013, 21:25113-25119. doi: 10.1364/OE.21.025113
    [15]
    WANG J, CHEN P, CHEN S, et al. Improved 8-channel silicon mode demultiplexer with grating polarizers[J]. Optics Express, 2014, 22:12799-12807. doi: 10.1364/OE.22.012799
    [16]
    LUO L, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5:3069/1-7. doi: 10.1038/ncomms4069
    [17]
    DING Y, XU J, ROS F D, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 22:10376-10382.
    [18]
    YANG Y D, LI Y, HUANG Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators[J]. Optics Express, 2014, 22:22172-22183. doi: 10.1364/OE.22.022172
    [19]
    YE M, YU Y, ZOU J, et al. On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing[J]. Optics Letters, 2014, 39:758-761. doi: 10.1364/OL.39.000758
    [20]
    UEMATSU T, ISHIZAKA Y, KAWAGUCHI Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. IEEE Journal of Lightwave Technolnology, 2012, 30:2421-2426. doi: 10.1109/JLT.2012.2199961
    [21]
    CASTRO J M, GERAGHTY D F. Demonstration of mode conversion using anti-symmetric Bragg gratings[J]. Optics Express, 2005, 13:4180-4184. doi: 10.1364/OPEX.13.004180
    [22]
    BREMER K, LOCHMANN S, ROTH B. Grating assisted optical waveguide coupler to excite individual modes of a multi-mode waveguide[J]. Optics Communications, 2015, 356:560-564. doi: 10.1016/j.optcom.2015.08.050
    [23]
    CHEN J, YANG Y, ZHU N. Echelle grating based mode demultiplexer for vertical mode-division multiplexing[J]. Optics Express, 2016, 24:24509-24516. doi: 10.1364/OE.24.024509
    [24]
    ZHU N, SONG J, WOSINSKI L, et al. Experimental demonstration of a cross-order echelle grating triplexer based on an amorphous silicon nanowire platform[J]. Optics Letters, 2009, 34:383-385. doi: 10.1364/OL.34.000383
    [25]
    ZHU N, MEI T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating[J]. Optics Communications, 2013, 298:120-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=287608de302f674c54ba03c3c042b5c4
    [26]
    BROUCKAERT J, BOGAERTS W, DUMON P, et al. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform[J]. IEEE Journal of Lightwave Technolnology, 2007, 25:1269-1275. doi: 10.1109/JLT.2007.893025
    [27]
    RANDEL S, RYF R, SIERRA A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 2011, 19:16697-16707. doi: 10.1364/OE.19.016697
    [28]
    LEI T, ZHANG M, LI Y R, et al. Massive individual orbi-tal angular momentum channels for multiplexing enabled by Dammann grating[J]. Light: Science & Applications, 2015, 4:e257/1-7.
    [29]
    CHEN K, WANG S, CHEN S, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array[J]. Optics Letters, 2015, 40:4655-4658. doi: 10.1364/OL.40.004655
    [30]
    CHEN C P, DRISCOLL J B, GROTE R R, et al. Mode and polarization multiplexing in a Si photonic chip at 40Gb/s aggregate data bandwidth[J]. IEEE Photonics Technology Letters, 2015, 27:22-25. doi: 10.1109/LPT.2014.2360126
    [31]
    ZHANG Y, HE Y, ZHU Q, et al. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk[J]. Photonics Research, 2017, 5:521-526. doi: 10.1364/PRJ.5.000521
    [32]
    WANG S, FENG X, GAO S, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode division multiplexing systems[J]. Optics Letters, 2017, 42:2802-2805. doi: 10.1364/OL.42.002802
    [33]
    CHEN Z, ZHU Y, RUAN X, et al. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and terabit WDM-MDM system demonstration[J]. IEEE Journal of Lightwave Technolnology, 2018, 36:2757-2766. doi: 10.1109/JLT.2018.2818793
    [34]
    GARCIA-RODRIGUEZ D, CORRAL J, GRIOL A, et al. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm[J]. Optics Letters, 2017, 42:1221-1224. doi: 10.1364/OL.42.001221
    [35]
    XU H, SHI Y. Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure[J]. Optics Letters, 2017, 42:5202-5205. doi: 10.1364/OL.42.005202
    [36]
    ZHAO W K, CHEN K X, WU J Y, et al. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing[J]. IEEE Photonics Journal, 2017, 9(5):1-9.
    [37]
    DING W, TANG D, LIU Y, et al. Compact and low crosstalk waveguide crossing using impedance matched metamaterial[J]. Applied Physics Letters, 2010, 96(11):1855-1857. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215130365/
    [38]
    CHEN H, POON A W. Low-loss multimode-interference-based crossings for silicon wire waveguides[J]. IEEE Photonics Technology Letters, 2006, 18(21):2260-2262. doi: 10.1109/LPT.2006.884726
    [39]
    KIM S H, CONG G, KAWASHIMA H, et al. Tilted MMI crossings based on silicon wire waveguide[J]. Optics Express, 2014, 22:2545-3552. doi: 10.1364/OE.22.002545
    [40]
    OTA M, FUKUHARA M, SUMIMURA A, et al. Dielectric-loaded surface plasmon polariton crossing waveguides using multimode interference[J]. Optics Letters, 2015, 40:2269-2272. doi: 10.1364/OL.40.002269
    [41]
    SANCHIS P, VILLALBA P, CUESTA F, et al. Highly efficient crossing structure for silicon-on-insulator wave-guides[J]. Optics Letters, 2009, 34:2760-2762. doi: 10.1364/OL.34.002760
    [42]
    LI X, XU H, XIAO X, et al. Demonstration of a highly efficient multimode interference based silicon waveguide crossing[J]. Optics Communications, 2014, 312:148-152. doi: 10.1016/j.optcom.2013.08.021
    [43]
    LI Y, XU C, ZENG C, et al. Hybrid plasmonic waveguide crossing based on the multimode interference effect[J]. Optics Communications, 2015, 335:86-89. doi: 10.1016/j.optcom.2014.09.016
    [44]
    ZHANG Y, HOSSEINI A, XU X, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers[J]. Optics Letters, 2013, 38(18):3608-3611. doi: 10.1364/OL.38.003608
    [45]
    XU Y, WANG J, XIAO J, et al. Design of a compact silicon-based slot-waveguide crossing composed of an orthogonal strip multimode waveguide and four logarithmical mode converters[J]. Journal of Physics D:Applied Phy-sics, 2013, 46:455102/1-9. doi: 10.1088/0022-3727/46/45/455102
    [46]
    GUOFANG F, REGIS O, BING H, et al. 8 x 8 wavelength router of optical network on chip[J]. Optics Express, 2017, 25:23677-23683. doi: 10.1364/OE.25.023677
    [47]
    YANG L, ZHOU T, JIA H, et al. General architectures for on-chip optical space and mode switching[J]. Optica, 2018, 5(2):180-187.
    [48]
    XU H, SHI Y. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers[J]. Optics Letters, 2016, 41:5381-5384. doi: 10.1364/OL.41.005381
    [49]
    XU H, SHI Y. Metamaterial-based Maxwell's fisheye lens for multimode waveguide crossing[J]. Laser Photonics Reviews, 2018, 12:1800094/1-6. doi: 10.1002/lpor.201800094
    [50]
    HOU Z, LI X, HUANG Y, et al. Physics of elliptical reflectors at large reflection and divergence angles Ⅰ:their design for nano-photonic integrated circuits and application to low-loss low-crosstalk waveguide crossing[J]. Optics Communications, 2013, 287:96-105. doi: 10.1016/j.optcom.2012.08.078
    [51]
    ZHANG K, LIU Q, ZHU N. Analysis of a waveguide crossing structure suitable for vertical multi-modes based on planar curved reflectors[J]. Applied Optics, 2019, 58:1299-1304. doi: 10.1364/AO.58.001299
  • Cited by

    Periodical cited type(1)

    1. 姚琴, 谢柏臻, 裴一花. 聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe_3O_4的合成及其基因转染应用. 华南师范大学学报(自然科学版). 2018(06): 48-53 .

    Other cited types(0)

Catalog

    Article views (2773) PDF downloads (88) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return