• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Xingfu, CAO Jin. Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 1-8. DOI: 10.6054/j.jscnun.2020002
Citation: WANG Xingfu, CAO Jin. Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 1-8. DOI: 10.6054/j.jscnun.2020002

Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires

More Information
  • Received Date: October 21, 2019
  • Available Online: March 21, 2021
  • The coupling between piezoelectric polarization and semiconductor properties has unique physical properties, and as a result, some new research fields such as piezoelectric electronics and piezoelectric optoelectronics have emerged, which has attracted attention. The article reviews the pressure effects of electrical and piezoelectric optoelectronics on metal/semiconductor(M/S) and p-n junctions, introducing the basic progress in the research on c-axis and a-axis piezoelectric electronics and piezoelectric optoelectronics and their application. The piezoelectric effect in c-axis nanostructures is an interface effect. It uses the piezoelectric polarization generated at the local M/S contact or the homo/heterojunction of the nanostructure to control the carrier across the interface. Transmission and the corresponding optoelectronic process is performed by photo-induced carriers. In non-polar a-axis nanowires, external strain-induced piezoelectric charges are distributed along the entire polar surface and across the nanowires width. The charge carrier transport process of a piezoelectric semiconductor is regulated by the piezoelectric effect throughout the nanostructure.
  • [1]
    GERHARDMULTHAUPT R. Origin of the piezoelectricity in polyvinylidene fluoride[J]. NTZ Archiv, 1985, 7:133-143.
    [2]
    SESSLER G M. Piezoelectricity in polyvinylidene fluoride[J]. The Journal of the Acoustical Society of America, 1981, 70:1596-1608. doi: 10.1121/1.387225
    [3]
    YAMADA T, UEDA T, KITAYAMA T. Piezoelectricity of a high-content lead zirconate titanate polymer composite[J]. Journal of Applied Physics, 1982, 53:4328-4332. doi: 10.1063/1.331211
    [4]
    TZOU H S, TSENG C I. Distributed piezoelectric sensor actuator design for dynamic measurement control of distributed parameter-systems-a piezoelectric finite-element approach[J]. Journal of Sound and Vibration, 1990, 138:17-34. doi: 10.1016/0022-460X(90)90701-Z
    [5]
    GIURGIUTIU V. Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 2005, 16:291-305. doi: 10.1177/1045389X05050106
    [6]
    IKUTA K, KAWAHARA A, YAMAZUMI S. Miniature cybernetic actuators using piezoelectric device[C]//MEMS 1991-IEEE International Conference on Micro Electro Mechanical Systems. Piscataway: IEEE, 1991: 131-136.
    [7]
    CRAWLEY E F, DELUIS J. Use of piezoelectric actuators as elements of intelligent structures[J]. AIAA Journal, 1987, 25:1373-1385. doi: 10.2514/3.9792
    [8]
    GROSS S J, TADIGADAPA S, JACKSON T N, et al. Lead- zirconate-titanate-based piezoelectric micromachined swit-ch[J]. Applied Physics Letters, 2003, 83:174-176. doi: 10.1063/1.1589192
    [9]
    CUEFF M, DEFAY E, REY P, et al. A fully packaged piezoelectric switch with low-voltage actuation and electrostatic hold[C]//2010 IEEE 23rd International Confe-rence on Mircro Electro Mechanical Systems. Piscataway: Proceedings of the IEEE, 2010: 212-215.
    [10]
    RENAUD M, KARAKAYA K, STERKEN T, et al. Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters[J]. Sensors Actuators A:Physical, 2008, 145:380-386.
    [11]
    FANG H B, LIU J Q, XU Z Y, et al. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting[J]. Microelectronics Journal, 2006, 37:1280-1284. doi: 10.1016/j.mejo.2006.07.023
    [12]
    OTTMAN G K, HOFMANN H F, BHATT A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J]. IEEE Transactions on Power Electronics, 2002, 17:669-676. doi: 10.1109/TPEL.2002.802194
    [13]
    TSENG K K, WANG L. Smart piezoelectric transducers for in situ health monitoring of concrete[J]. Smart Materials and Structures, 2004, 13:1017-1024. doi: 10.1088/0964-1726/13/5/006
    [14]
    WANG Z L. Progress in piezotronics and piezo-phototro-nics[J]. Advanced Materials, 2012, 24:4632-4646. doi: 10.1002/adma.201104365
    [15]
    WANG Z L. Piezopotential gated nanowire devices:pezotronics and piezo-phototronics[J]. Nano Today, 2010, 5:540-552. doi: 10.1016/j.nantod.2010.10.008
    [16]
    WANG Z L. From nanogenerators to piezotronics-a decade-long study of ZnO nanostructures[J]. Materials Research Society Bulletin, 2012, 37:814-827. doi: 10.1557/mrs.2012.186
    [17]
    YAMABI S, IMAI H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J]. Journal of Materials Chemistry C, 2002, 12:3773-3778. doi: 10.1039/b205384e
    [18]
    WU W Z, WEI Y G, WANG Z L. Strain-gated piezotronic logic nanodevices[J]. Advanced Materials, 2010, 22:4711-4715. doi: 10.1002/adma.201001925
    [19]
    YU R M, WU W Z, DING Y, et al. GaN nanobelt-based strain-gated piezotronic logic devices and computation[J]. ACS Nano, 2013, 7:6403-6409. doi: 10.1021/nn4026788
    [20]
    NIU S M, HU Y F, WEN X N, et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect[J]. Advanced Materials, 2013, 25:3701-3706. doi: 10.1002/adma.201301262
    [21]
    YU R M, PAN C F, WANG Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect[J]. Energy & Environmental Science, 2013, 6:494-499. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56f58a15b5e24ceda06d37e0e8f88676
    [22]
    YANG Q, WANG W H, XU S, et al. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect[J]. Nano Letters, 2011, 11:4012-4017. doi: 10.1021/nl202619d
    [23]
    PAN C F, CHEN M X, YU R M, et al. Progress in piezo-phototronic-effect-enhanced light-emitting diodes and pressure imaging[J]. Advanced Materials, 2016, 28:1535-1552. doi: 10.1002/adma.201503500
    [24]
    PAN C F, NIU S M, DING Y, et al. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect[J]. Nano Lettersers, 2012, 12:3302-3307. doi: 10.1021/nl3014082
    [25]
    WANG Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics[J]. Advanced Functional Materials, 2008, 18:3553-3567. doi: 10.1002/adfm.200800541
    [26]
    WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312:242-246. doi: 10.1126/science.1124005
    [27]
    GAO Z Y, ZHOU J, GU Y D, et al. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor[J]. Journal of Applied Physics, 2009, 106:113707/1-6. doi: 10.1063/1.3264719
    [28]
    WANG Z L. Piezotronics and piezo-phototronics[M]. Berlin: Springer Berlin Heidelberg, 2012.
    [29]
    WANG Z L, Nanopiezotronics[J]. Advanced Materials, 2007, 19:889-892. doi: 10.1002/adma.200602918
    [30]
    SHI J, STARR M B, WANG X D. Band structure engineering at heterojunction interfaces via the piezotronic effect[J]. Advanced Materials, 2012, 24:4683-4691. doi: 10.1002/adma.201104386
    [31]
    WANG Z L, WU W Z. Piezotronics and piezo-phototro-nics: fundamentals and applications[J]. National Science Review, 2014, 1(1):62-90. doi: 10.1093/nsr/nwt002
    [32]
    WU W Z, WANG Z L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories[J]. Nano Letters, 2011, 11:2779-2785. doi: 10.1021/nl201074a
    [33]
    PRADEL K C, WU W Z, ZHOU Y S, et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films[J]. Nano Letters, 2013, 13:2647-2653. doi: 10.1021/nl400792w
    [34]
    PRADEL K C, WU W Z, DING Y, et al. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition[J]. Nano Letters, 2014, 14:6897-6905. doi: 10.1021/nl5029182
    [35]
    LU S N, QI J J, GU Y S, et al. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction[J]. Nanoscale, 2015, 7:4461-4467. doi: 10.1039/C4NR07619B
    [36]
    XUE F, ZHANG L M, FENG X L, et al. Influence of external electric field on piezotronic effect in ZnO nanowires[J]. Nano Research, 2015, 8:2390-2399. doi: 10.1007/s12274-015-0749-3
    [37]
    LEE K Y, BAE J, KIM S, et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators[J]. Nano Energy, 2014, 8:165-173. doi: 10.1016/j.nanoen.2014.06.008
    [38]
    WANG C H, LIAO W S, KU N J, et al. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays[J]. Small, 2014, 10:4718-4725. doi: 10.1002/smll.201400768
    [39]
    SZE S M. Physics of semiconductor devices[M]. New Jersey: John Wiley & Sons, 2006.
    [40]
    HE J H, HSIN C L, LIU J, et al. Piezoelectric gated diode of a single ZnO nanowire[J]. Advanced Materials, 2007, 19:781-785. doi: 10.1002/adma.200601908
    [41]
    WANG Z L. The new field of nanopiezotronics[J]. Mater Today, 2007, 10:20-28.
    [42]
    WANG Z L. Preface to the special section on piezotronics[J]. Advanced Materials, 2012, 24:4630-4631. doi: 10.1002/adma.201202888
    [43]
    ZHANG Y, WANG Z L. Theory of piezo-phototronics for light-emitting diodes[J]. Advanced Materials, 2012, 24: 4712-4718. doi: 10.1002/adma.201104263
    [44]
    YU R M, NIU S M, PAN C F, et al. Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors[J]. Nano Energy, 2015, 14:312-339. doi: 10.1016/j.nanoen.2014.11.037
    [45]
    WU W Z, WANG Z L. Piezotronics and piezo-phototro-nics for adaptive electronics and optoelectronics[J]. Nature Reviews Materials, 2016(1):1603/1-17.
    [46]
    YU R M, WANG X F, PENG W B, et al. Piezotronic effect in strain-gated transistor of a-axis GaN nanobelt[J]. ACS Nano, 2015, 9:9822-9829. doi: 10.1021/acsnano.5b02817
    [47]
    GAO Y, WANG Z L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire[J]. Nano Letters, 2009, 9:1103-1110. doi: 10.1021/nl803547f
    [48]
    WANG X F, YU R M, PENG W B, et al. Temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts[J]. Advanced Materials, 2015, 27:8067-8074. doi: 10.1002/adma.201504534
    [49]
    SLACK G A, SCHOWALTER L J, MORELLI D, et al. Some effects of oxygen impurities on AlN and GaN[J]. Journal of Crystal Growth, 2002, 246:287-298. doi: 10.1016/S0022-0248(02)01753-0
    [50]
    MOLNAR R J, LEI T, MOUSTAKAS T D. Electron-transport mechanism in gallium nitride[J]. Applied Physics Letters, 1993, 62:72-74. doi: 10.1063/1.108823
    [51]
    MOORE W J, FREITAS J A, BRAGA G C B, et al. Identification of Si and O donors in hydride-vapor-phase epitaxial GaN[J]. Applied Physics Letters, 2001, 79:2570-2572. doi: 10.1063/1.1411985
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (2306) PDF downloads (100) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return