Citation: | WU Qin, LIU Yin, RUAN Jian. The Generalized Poisson Count Technique and its Statistical Inference[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 107-110. DOI: 10.6054/j.jscnun.2019109 |
[1] |
TANG M L, WU Q, TIAN G L, et al. Two-sample non randomized response techniques for sensitive questions[J]. Communications in Statistics-Theory and Methods, 2014, 43(2):408-425. doi: 10.1080/03610926.2012.657323
|
[2] |
WU Q, TANG M L. Flexible non-randomized response models for survey with sensitive question[J]. Statistics in Medicine, 2014, 33:918-929. doi: 10.1002/sim.5999
|
[3] |
LIU Y, TIAN G L, WU Q, et al. Poisson-Poisson item count techniques for surveys with sensitive discrete quantitative data [J]. Statistical Papers, 2017, 58(1):1-29. doi: 10.1007/s00362-015-0682-2
|
[4] |
TOURANGEAU R, YAN T. Sensitive questions in surveys[J]. Psychological Bulletin, 2007, 133:859-883. doi: 10.1037/0033-2909.133.5.859
|
[5] |
WARNER S L. Randomized response:a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60:63-69. doi: 10.1080/01621459.1965.10480775
|
[6] |
TIAN G L, YU J W, TANG M L, et al. A new non-randomized model for analyzing sensitive questions with binary outcomes [J]. Statistics in Medicine, 2007, 26:4238-4252. doi: 10.1002/sim.2863
|
[7] |
YU J W, TIAN G L, TANG M L. Two new models for survey sampling with sensitive characteristic:design and ana-lysis[J]. Metrika, 2008, 67:251-263. doi: 10.1007/s00184-007-0131-x
|
[8] |
MILLER J D. A new survey technique for studying deviant behavior[D]. Washington: George Washington University, 1984: 22-24.
|
[9] |
TSUCHIYA T. Domain estimators for the item count technique[J]. Survey Methodoly, 2005, 31:41-51.
|
[10] |
IMAI K. Multivariate regression analysis for the item count technique[J]. Journal of the American Statistical Association, 2011, 106(494):407-416. doi: 10.1198/jasa.2011.ap10415
|
[11] |
PETROCZI A, NEPUSZ T, CROSS P, et al. New non-randomized model to assess the prevalence of discriminating behavior:a pilot study on mephedrone[J]. Substance Abuse Treatment, Prevention, and Policy, 2011, 6:1-20. doi: 10.1186/1747-597X-6-1
|
[12] |
GREENBERG B G, ABUL-ELA A A, SIMMONS W R, et al. The unrelated question randomized response model: theoretical framework[J]. Journal of the American Statistical Association, 1969, 64:520-539. doi: 10.1080/01621459.1969.10500991
|
[13] |
BLAIR G, IMAI K. Statistical analysis of list experiments[J]. Political Analysis, 2012, 20:47-77. doi: 10.1093/pan/mpr048
|
[14] |
TIAN G L, TANG M L, WU Q, et al. Poisson and negative binomial item count techniques for surveys with sensitive question[J]. Statistical Methods in Medical Research, 2017, 26(2):931-947. doi: 10.1177/0962280214563345
|
[15] |
LIU Y, TIAN G L, WU Q, et al. Poisson-Poisson item count techniques for surveys with sensitive discrete quantitative data[J]. Statistical Papers, 2019, 60(5):1763-1791. doi: 10.1007/s00362-017-0895-7
|
[16] |
CONSUL P C. Generalized poisson distributions:properties and applications[M]. New York:CRC Press, 1988.
|
[17] |
何朝兵, 柴士改, 刘华文.截断删失数据下泊松分布参数的点估计[J].华南师范大学学报(自然科学版), 2015, 47(4):141-145. doi: 10.6054/j.jscnun.2015.01.011
HE C B, CHAI S G, LIU H W. Point estimation of parameter of Poisson distribution for truncated and censored data[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(4):141-145. doi: 10.6054/j.jscnun.2015.01.011
|
[18] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B, 1977, 39(1):1-38. https://www.researchgate.net/publication/246782707_Maximum_Likelihood_from_Incomplete_Data
|
[19] |
LANGE K. MM optimization algorithms[M]. Los Ange-les, California:SIAM, 2016:93-121.
|
[20] |
SHELDO M R. Simulation[M]. 5th Ed. Los Angeles: Aca-demic Press, 2012.
|
1. |
刘林才,付川云. 交通违法行为与事故关系研究:基于零截尾负二项和广义泊松模型. 综合运输. 2021(12): 51-58 .
![]() |