• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JI Zhanjiang, ZHANG Gengrong, TU Jingxian. The Strong G-shadowing Property of the Inverse Limit Spaces and the Product Spaces of Group Action[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 103-106. DOI: 10.6054/j.jscnun.2019108
Citation: JI Zhanjiang, ZHANG Gengrong, TU Jingxian. The Strong G-shadowing Property of the Inverse Limit Spaces and the Product Spaces of Group Action[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 103-106. DOI: 10.6054/j.jscnun.2019108

The Strong G-shadowing Property of the Inverse Limit Spaces and the Product Spaces of Group Action

More Information
  • Received Date: January 01, 2019
  • Available Online: March 21, 2021
  • The concept of the strong G-shadowing property is given in the metric spaces under the action of topologi-cal group. Then the dynamical properties of the strong G-shadowing property in the inverse limit spaces and the product spaces under the action of topological group are studied. The following conclusions are obtained. Let the system (Xf, G, d, σ) be the inverse limit spaces of the system (X, G, d, f). Then f has the G-shadowing property if and only if σ has the G-shadowing property. The product map f1×f2 has the strong G-shadowing property if and only if the map f1 has the strong G1-shadowing property and the map f2 has the strong G2-shadowing property. These results enrich the theory of strong G-shadowing property in the inverse limit spaces and the product spaces under the action of topological group.
  • [1]
    NIU Y X. The average-shadowing property and strong ergodicity[J]. Journal of Mathematical Analysis and Applications, 2011, 376(2):528-534. doi: 10.1016/j.jmaa.2010.11.024
    [2]
    汪火云, 曾鹏.平均伪轨的部分跟踪[J].中国科学:数学, 2016, 46(4):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201606002

    WANG H Y, ZENG P. Partial shadowing of average pseudo-orbits[J]. Scientific Sinica:Mathematica, 2016, 46(4):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201606002
    [3]
    顾荣宝, 盛业青.关于渐近的伪轨跟踪性质[J].安徽大学学报(自然科学版), 2003, 27(3):1-5. doi: 10.3969/j.issn.1000-2162.2003.03.001

    GU R B, SHENG Y Q. On the asymptotic pseudo orbit tracing property[J]. Journal of Anhui University(Natural Science Edition), 2003, 27(3):1-5. doi: 10.3969/j.issn.1000-2162.2003.03.001
    [4]
    晏炳刚, 吴泽刚.关于强跟踪性的注记[J].成都大学学报(自然科学版), 2007, 26(4):292-294. doi: 10.3969/j.issn.1004-5422.2007.04.009

    YAN B G, WU Z G. Notes about strong shadowing property[J]. Journal of Chengdu University(Natural Science Edition), 2007, 26(4):292-294. doi: 10.3969/j.issn.1004-5422.2007.04.009
    [5]
    赵俊玲, 张莉.周期伪轨跟踪性和伪轨跟踪性的关系[J].浙江大学学报(理学版), 2010, 37(5):505-507. doi: 10.3785/j.issn.1008-9497.2010.05.005

    ZHAO J L, ZHANG L. Relationship between the periodic pseudo orbit tracing property and the pseudo orbit tracing property[J]. Journal of Zhejiang University(Science Edition), 2010, 37(5):505-507. doi: 10.3785/j.issn.1008-9497.2010.05.005
    [6]
    GU R B, SHENG Y Q. APOTP for the inverse limit spaces[J]. Applied Mathematics Journal, 2006, 21(4):473-478. doi: 10.1007/s11766-006-0012-5
    [7]
    朱玉峻, 何连法.线性系统的极限跟踪性[J].数学物理学报, 2007, 27(2):314-321. doi: 10.3321/j.issn:1003-3998.2007.02.016

    ZHU Y J, HE L F. Limit shadowing property of linear systems[J]. Acta Mathematica Scientia, 2007, 27(2):314-321. doi: 10.3321/j.issn:1003-3998.2007.02.016
    [8]
    HOSSEIN R. On the shadowing property of nonautonomous discrete systems[J]. International Journal of Nonlinear Analysis and Applications, 2016(1):271-277. http://cn.bing.com/academic/profile?id=9325b0f910c9daa3b898235df5be42cb&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    HOSSEIN R, REZA M. On the relation of shadowing and expansivity in nonautonomous discrete systems[J]. Analy-sis in Theory and Applications, 2017, 33(1):11-19. doi: 10.4208/ata.2017.v33.n1.2
    [10]
    FAKHARI A, GHANE F H. On shadowing:ordinary and ergodic[J]. Journal of Mathematical Analysis and Applications, 2010, 364:151-155. doi: 10.1016/j.jmaa.2009.11.004
    [11]
    OPROCHA P, DASTJERDI D A, HOSSEINI M. On partial shadowing of complete pseudo-orbits[J]. Journal of Ma-thematical Analysis and Applications, 2013, 404:47-56. doi: 10.1016/j.jmaa.2013.02.068
    [12]
    冀占江.乘积空间与拓扑群作用下逆极限空间的动力学性质[D].南宁: 广西大学, 2014.

    JI Z J. Dynamical property of product space and the inverse limit space of a topological group action[D]. Nanning: Guangxi University, 2014.
    [13]
    AHMADI S A. Invariants of topological G-conjugacy on G-spaces[J]. Mathematica Moravica, 2014, 18(1):67-75. doi: 10.5937/MatMor1401067A
    [14]
    EKTA S, TARUN D. Consequences of shadowing property of G-spaces[J]. International Journal of Mathematical Analysis, 2013, 7(12):579-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002317151
    [15]
    RUCHI D, TARUN D. On properties of G-expansive homeomorphisms[J]. Mathematica Slovaca, 2012, 62(3):531-538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2478/s12175-012-0028-7
  • Cited by

    Periodical cited type(4)

    1. 冀占江. G-跟踪性和G-周期跟踪性研究. 浙江大学学报(理学版). 2023(04): 429-433 .
    2. 冀占江,陈占和,张更容. 逆极限以及双重逆极限空间中利普希次跟踪性和几乎周期点的研究. 山西大学学报(自然科学版). 2022(02): 343-347 .
    3. 冀占江,张更容. 强一致收敛下弱几乎周期点和周期序列跟踪性的研究. 华南师范大学学报(自然科学版). 2021(02): 110-113 .
    4. 时伟,冀占江,覃桂茳,吴海龙. 群作用下移位映射的极限跟踪性. 数学的实践与认识. 2021(16): 196-199 .

    Other cited types(0)

Catalog

    Article views (1433) PDF downloads (43) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return