Citation: | JI Zhanjiang, ZHANG Gengrong, TU Jingxian. The Strong G-shadowing Property of the Inverse Limit Spaces and the Product Spaces of Group Action[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 103-106. DOI: 10.6054/j.jscnun.2019108 |
[1] |
NIU Y X. The average-shadowing property and strong ergodicity[J]. Journal of Mathematical Analysis and Applications, 2011, 376(2):528-534. doi: 10.1016/j.jmaa.2010.11.024
|
[2] |
汪火云, 曾鹏.平均伪轨的部分跟踪[J].中国科学:数学, 2016, 46(4):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201606002
WANG H Y, ZENG P. Partial shadowing of average pseudo-orbits[J]. Scientific Sinica:Mathematica, 2016, 46(4):781-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201606002
|
[3] |
顾荣宝, 盛业青.关于渐近的伪轨跟踪性质[J].安徽大学学报(自然科学版), 2003, 27(3):1-5. doi: 10.3969/j.issn.1000-2162.2003.03.001
GU R B, SHENG Y Q. On the asymptotic pseudo orbit tracing property[J]. Journal of Anhui University(Natural Science Edition), 2003, 27(3):1-5. doi: 10.3969/j.issn.1000-2162.2003.03.001
|
[4] |
晏炳刚, 吴泽刚.关于强跟踪性的注记[J].成都大学学报(自然科学版), 2007, 26(4):292-294. doi: 10.3969/j.issn.1004-5422.2007.04.009
YAN B G, WU Z G. Notes about strong shadowing property[J]. Journal of Chengdu University(Natural Science Edition), 2007, 26(4):292-294. doi: 10.3969/j.issn.1004-5422.2007.04.009
|
[5] |
赵俊玲, 张莉.周期伪轨跟踪性和伪轨跟踪性的关系[J].浙江大学学报(理学版), 2010, 37(5):505-507. doi: 10.3785/j.issn.1008-9497.2010.05.005
ZHAO J L, ZHANG L. Relationship between the periodic pseudo orbit tracing property and the pseudo orbit tracing property[J]. Journal of Zhejiang University(Science Edition), 2010, 37(5):505-507. doi: 10.3785/j.issn.1008-9497.2010.05.005
|
[6] |
GU R B, SHENG Y Q. APOTP for the inverse limit spaces[J]. Applied Mathematics Journal, 2006, 21(4):473-478. doi: 10.1007/s11766-006-0012-5
|
[7] |
朱玉峻, 何连法.线性系统的极限跟踪性[J].数学物理学报, 2007, 27(2):314-321. doi: 10.3321/j.issn:1003-3998.2007.02.016
ZHU Y J, HE L F. Limit shadowing property of linear systems[J]. Acta Mathematica Scientia, 2007, 27(2):314-321. doi: 10.3321/j.issn:1003-3998.2007.02.016
|
[8] |
HOSSEIN R. On the shadowing property of nonautonomous discrete systems[J]. International Journal of Nonlinear Analysis and Applications, 2016(1):271-277. http://cn.bing.com/academic/profile?id=9325b0f910c9daa3b898235df5be42cb&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
HOSSEIN R, REZA M. On the relation of shadowing and expansivity in nonautonomous discrete systems[J]. Analy-sis in Theory and Applications, 2017, 33(1):11-19. doi: 10.4208/ata.2017.v33.n1.2
|
[10] |
FAKHARI A, GHANE F H. On shadowing:ordinary and ergodic[J]. Journal of Mathematical Analysis and Applications, 2010, 364:151-155. doi: 10.1016/j.jmaa.2009.11.004
|
[11] |
OPROCHA P, DASTJERDI D A, HOSSEINI M. On partial shadowing of complete pseudo-orbits[J]. Journal of Ma-thematical Analysis and Applications, 2013, 404:47-56. doi: 10.1016/j.jmaa.2013.02.068
|
[12] |
冀占江.乘积空间与拓扑群作用下逆极限空间的动力学性质[D].南宁: 广西大学, 2014.
JI Z J. Dynamical property of product space and the inverse limit space of a topological group action[D]. Nanning: Guangxi University, 2014.
|
[13] |
AHMADI S A. Invariants of topological G-conjugacy on G-spaces[J]. Mathematica Moravica, 2014, 18(1):67-75. doi: 10.5937/MatMor1401067A
|
[14] |
EKTA S, TARUN D. Consequences of shadowing property of G-spaces[J]. International Journal of Mathematical Analysis, 2013, 7(12):579-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002317151
|
[15] |
RUCHI D, TARUN D. On properties of G-expansive homeomorphisms[J]. Mathematica Slovaca, 2012, 62(3):531-538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2478/s12175-012-0028-7
|