Citation: | LONG Neng, LIANG Haihua. An Equilibrium Point Analysis of a Class of Planar Cubic Polynomial Systems[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 98-102. DOI: 10.6054/j.jscnun.2019107 |
[1] |
李玉婷.一类平面三次多项式系统的定性分析[D].福州: 福州大学, 2010.
LI Y T. Qualitative analysis of a class of cubic system with planar polynomial[D]. Fuzhou: Fuzhou University, 2010.
|
[2] |
齐世花.一类平面多项式微分系统的定性分析[D].济南: 山东师范大学, 2001.
QI S H. Qualitative analysis of a kind of plane polynomial differential systems[D]. Jinan: Shandong Normal University, 2001.
|
[3] |
李宗成.一类多项式微分系统的定性分析[D].济南: 山东师范大学, 2004.
LI Z C. Qualitative analysis for a class of polynomial di-fferential system[D]. Jinan: Shandong Normal University, 2004.
|
[4] |
桑波.一类平面四次系统的定性分析[D].济南: 山东师范大学, 2003.
SANG B. Qualitative analysis of a kind of plane quartic polynomial differential systems[D]. Jinan: Shandong Normal University, 2003.
|
[5] |
程雪梅.一类平面五次多项式系统的定性分析及全局结构[D].济南: 山东师范大学, 2003.
|
[6] |
蒋自国.一类高次多项式系统平衡点的性态分析[J].西南民族大学学报(自然科学版), 2012, 38(1):18-23. http://d.old.wanfangdata.com.cn/Periodical/xnmzxyxb201201005
JIANG Z G. Qualitative analysis for the equilibrium point of a class of odd polynomial system[J]. Journal of Southwest University for Nationalities(Natural Science Edition), 2012, 38(1):18-23. http://d.old.wanfangdata.com.cn/Periodical/xnmzxyxb201201005
|
[7] |
ZOLADEK H. Eleven small limit cycles in a cubic vector field[J]. Nonlinearity, 1999, 8(5):843-860. http://cn.bing.com/academic/profile?id=110c578e3b33212fc0e9c4e9286176ca&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
QIU Y, YANG J Z. On the focus order of planar polynomial differential equations[J]. Journal of Differential Equations, 2009, 246(8):3361-3379. doi: 10.1016/j.jde.2009.02.005
|
[9] |
LLIBRE J, RABANAL R. Planar real polynomial differential systems of degree n>3 having a weak-focus of high order[J]. Rocky Mountain Journal of Mathematics, 2012, 42(2):657-693. doi: 10.1216/RMJ-2012-42-2-657
|
[10] |
LIANG H, TORREGROSA J. Weak-foci of high order and cyclicity[J]. Qualitative Theory of Dynamical Systems, 2017, 16(2):235-248. doi: 10.1007/s12346-016-0189-9
|
[11] |
龙能.一类平面三次多项式微分系统的焦点性质[J].海南师范大学学报(自然科学版), 2018, 31(4):412-417. http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201804011
LONG N. Focal properties of a class of planar cubic polynomial differential systems[J]. Journal of Hainan Normal University(Natural Science), 2018, 31(4):412-417. http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201804011
|
[12] |
张锦炎, 冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社, 1981.
|
[13] |
杨路, 张景中, 侯晓荣.非线性代数方程组与定理机器证明[M].上海:上海科技教育出版社, 1996.
|
[14] |
华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社, 1980.
|
[15] |
CROWLEY D, GRANT M. The Poincaré-Hopf theorem for line fields revisited[J]. Journal of Geometry and Physics, 2017, 117:187-196. doi: 10.1016/j.geomphys.2017.03.011
|
[16] |
杨妮, 魏春强.辗转相除法的统一公式及其应用[J].安康学院学报, 2018, 30(1):107-109. http://d.old.wanfangdata.com.cn/Periodical/akszxb201801021
YANG N, WEI C Q. The uniform formula of division algorithm and its application[J]. Journal of Ankang University, 2018, 30(1):107-109. http://d.old.wanfangdata.com.cn/Periodical/akszxb201801021
|