• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LONG Neng, LIANG Haihua. An Equilibrium Point Analysis of a Class of Planar Cubic Polynomial Systems[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 98-102. DOI: 10.6054/j.jscnun.2019107
Citation: LONG Neng, LIANG Haihua. An Equilibrium Point Analysis of a Class of Planar Cubic Polynomial Systems[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 98-102. DOI: 10.6054/j.jscnun.2019107

An Equilibrium Point Analysis of a Class of Planar Cubic Polynomial Systems

More Information
  • Received Date: December 23, 2018
  • Available Online: March 21, 2021
  • The equilibrium points of a class of plane cubic polynomial systems =-y+αx2-αy2+βx3-3βxy2, =x-2αxy+3βx2y-βy3 are discussed. It is proved that when |α-1|≪0, |β-1|≪0, there are four infinite equilibrium points and all of them are saddle points, and there are three finite equilibrium points and all of them are focal points. The position, order and stability of the three focal points are given.
  • [1]
    李玉婷.一类平面三次多项式系统的定性分析[D].福州: 福州大学, 2010.

    LI Y T. Qualitative analysis of a class of cubic system with planar polynomial[D]. Fuzhou: Fuzhou University, 2010.
    [2]
    齐世花.一类平面多项式微分系统的定性分析[D].济南: 山东师范大学, 2001.

    QI S H. Qualitative analysis of a kind of plane polynomial differential systems[D]. Jinan: Shandong Normal University, 2001.
    [3]
    李宗成.一类多项式微分系统的定性分析[D].济南: 山东师范大学, 2004.

    LI Z C. Qualitative analysis for a class of polynomial di-fferential system[D]. Jinan: Shandong Normal University, 2004.
    [4]
    桑波.一类平面四次系统的定性分析[D].济南: 山东师范大学, 2003.

    SANG B. Qualitative analysis of a kind of plane quartic polynomial differential systems[D]. Jinan: Shandong Normal University, 2003.
    [5]
    程雪梅.一类平面五次多项式系统的定性分析及全局结构[D].济南: 山东师范大学, 2003.
    [6]
    蒋自国.一类高次多项式系统平衡点的性态分析[J].西南民族大学学报(自然科学版), 2012, 38(1):18-23. http://d.old.wanfangdata.com.cn/Periodical/xnmzxyxb201201005

    JIANG Z G. Qualitative analysis for the equilibrium point of a class of odd polynomial system[J]. Journal of Southwest University for Nationalities(Natural Science Edition), 2012, 38(1):18-23. http://d.old.wanfangdata.com.cn/Periodical/xnmzxyxb201201005
    [7]
    ZOLADEK H. Eleven small limit cycles in a cubic vector field[J]. Nonlinearity, 1999, 8(5):843-860. http://cn.bing.com/academic/profile?id=110c578e3b33212fc0e9c4e9286176ca&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    QIU Y, YANG J Z. On the focus order of planar polynomial differential equations[J]. Journal of Differential Equations, 2009, 246(8):3361-3379. doi: 10.1016/j.jde.2009.02.005
    [9]
    LLIBRE J, RABANAL R. Planar real polynomial differential systems of degree n>3 having a weak-focus of high order[J]. Rocky Mountain Journal of Mathematics, 2012, 42(2):657-693. doi: 10.1216/RMJ-2012-42-2-657
    [10]
    LIANG H, TORREGROSA J. Weak-foci of high order and cyclicity[J]. Qualitative Theory of Dynamical Systems, 2017, 16(2):235-248. doi: 10.1007/s12346-016-0189-9
    [11]
    龙能.一类平面三次多项式微分系统的焦点性质[J].海南师范大学学报(自然科学版), 2018, 31(4):412-417. http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201804011

    LONG N. Focal properties of a class of planar cubic polynomial differential systems[J]. Journal of Hainan Normal University(Natural Science), 2018, 31(4):412-417. http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201804011
    [12]
    张锦炎, 冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社, 1981.
    [13]
    杨路, 张景中, 侯晓荣.非线性代数方程组与定理机器证明[M].上海:上海科技教育出版社, 1996.
    [14]
    华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社, 1980.
    [15]
    CROWLEY D, GRANT M. The Poincaré-Hopf theorem for line fields revisited[J]. Journal of Geometry and Physics, 2017, 117:187-196. doi: 10.1016/j.geomphys.2017.03.011
    [16]
    杨妮, 魏春强.辗转相除法的统一公式及其应用[J].安康学院学报, 2018, 30(1):107-109. http://d.old.wanfangdata.com.cn/Periodical/akszxb201801021

    YANG N, WEI C Q. The uniform formula of division algorithm and its application[J]. Journal of Ankang University, 2018, 30(1):107-109. http://d.old.wanfangdata.com.cn/Periodical/akszxb201801021
  • Cited by

    Periodical cited type(5)

    1. 杨雨锟,毕硕本,邱湘开,李士毫. 明清时期中国沿海地区台风灾害的时空特征. 古地理学报. 2024(02): 446-459 .
    2. 张森,杨煜达. 1640—1949年影响江浙沪地区超强台风序列的重建. 历史地理研究. 2023(04): 34-47+148 .
    3. 潘威,王一帆,白江涛,小林雄河. 1650~1900年代华东、日本入境台风路径变化及社会影响. 第四纪研究. 2021(02): 589-599 .
    4. 杨昊岩,栾涛,韩仲志,倪建功,高霁月. 基于深度学习声谱图分类的“听声识风”. 华南师范大学学报(自然科学版). 2021(05): 10-16 .
    5. 廖茂传,衷海燕. 历史时期广东沿海风暴潮灾害研究. 防灾科技学院学报. 2020(04): 99-105 .

    Other cited types(0)

Catalog

    Article views (1165) PDF downloads (42) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return