Citation: | LI Xiaoni, ZHANG Qimin. Stability Analysis of an SIRS Epidemic Model with Information Intervention[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 98-103. DOI: 10.6054/j.jscnun.2019090 |
[1] |
BERRHAZI B, FATINI M, LAHROUZ A, et al. A stochastic SIRS epidemic model with a general awareness-induced incidence[J]. Physica A:Statistical Mechanics and its Applications, 2018, 512:968-980. doi: 10.1016/j.physa.2018.08.150
|
[2] |
LUH D L, LIU C C, LUO Y R, et al. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan[J]. Journal of Infection and Public Health, 2018, 11:215-223. doi: 10.1016/j.jiph.2017.07.021
|
[3] |
DAS P, MUKANDAVIRE Z, CHIYAKA C, et al. Bifurcation and chaos in S-I-S epidemic model[J]. Differential Equations and Dynamical Systems, 2009, 17(4):393-417. doi: 10.1007/s12591-009-0028-4
|
[4] |
吴敏, 翁佩萱.具有阶段结构的多时滞SIR扩散模型的稳定性[J].华南师范大学学报(自然科学版), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml
WU M, WENG P X. Stability of a stage-structured diffusive SIR model with delays[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml
|
[5] |
CAO B Q, SHAN M J, ZHANG Q M, et al. A stochastic SIS epidemic model with vaccination[J]. Physica A:Statistical Mechanics and its Applications, 2017, 486:127-143. doi: 10.1016/j.physa.2017.05.083
|
[6] |
XIAO Y N, TANG S Y, WU J H. Media impact switching surface during an infectious disease outbreak[J]. Scientific Report, 2015, 5:7838/1-9. doi: 10.1038/srep07838
|
[7] |
WANG X W, PENG H J, SHI B Y, et al. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model[J]. Communication in Nonlinear Science and Numerical Simulation, 2019, 67:37-48. doi: 10.1016/j.cnsns.2018.07.003
|
[8] |
LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with genera-lized non-linear incidence and vaccination[J]. Applied Mathematics and Computation, 2012, 218:6519-6525. doi: 10.1016/j.amc.2011.12.024
|
[9] |
乔杰, 刘贤宁.考虑疫苗时效及潜伏期的乙肝传染病模型分析[J].西南大学学报(自然科学版), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016
QIAO J, LIU X L. Analysis of an HBV transmission model with vaccinal effectiveness and latency[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016
|
[10] |
BAO K B, ZHANG Q M. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention[J]. Advances in Difference Equations, 2017, 352:1-19. http://d.old.wanfangdata.com.cn/Periodical/yingysx201803027
|
[11] |
赵晓艳, 明艳, 李学志.一类考虑媒体报道影响的传染病模型分析[J].数学的实践与认识, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046
ZHAO X Y, MING Y, LI X Z. Analysis of a kind of epidemic model with the impact of media coverage[J]. Mathematics in Practice and Theory, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046
|
[12] |
KUMAR A, SRIVASTAVE P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology, 2017, 414:103-119. doi: 10.1016/j.jtbi.2016.11.016
|
[13] |
VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathema-tical Biosciences, 2002, 180(1):29-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bafe6f5a607891dd89d1790f875d387
|
[14] |
LAWRENCE P. Differential equations and dynamical systems[M]. New York:Springer, 1991.
|
[15] |
CASTILLO-CHAVEZ C, FENG Z L, HUANG W Z. On the computation of ℜ0 and its role in global stability[J]. Institute for Mathematics and its Applications, 2002, 125:229-250. https://mathscinet.ams.org/mathscinet-getitem?mr=1938888
|