Citation: | CHEN Shengnan, LIAO Zicong, HU Yongyou. Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 38-48. DOI: 10.6054/j.jscnun.2019083 |
[1] |
SUN L P, LIU Y, JIN H. Nitrogen removal from polluted river by enhanced floating bed grown canna[J]. Ecological Engineering, 2009, 35(1):135-140. doi: 10.1016/j.ecoleng.2008.09.016
|
[2] |
聂玉华.微曝气强化生态浮床对污水中氮元素的去除效果研究[D].成都: 西南交通大学, 2015.
NIE Y H. Study on the decontamination performance of nitrogen in polluted water by micro-aeration enhanced ecological floating bed[D]. Chengdu: Southwest Jiaotong University, 2015.
|
[3] |
CAO W P, ZHANG Y Q. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates[J]. Ecological Engineering, 2014, 62(1):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aac52e57aa4af49276928fa4e7ac0c2
|
[4] |
WANG W H, WANG Y, LI Z, et al. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water[J]. Science of the Total Environment, 2018, 622/623:1630-1639. doi: 10.1016/j.scitotenv.2017.10.035
|
[5] |
王梦月, 马鲁铭.催化铁强化低碳废水生物反硝化过程的探讨[J].环境科学, 2014, 35(7):2633-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028
WANG M Y, MA L M. Investigation of enhanced low carbon wastewater denitrification by catalytic iron[J]. Environmental Science, 2014, 35(7):2633-2638 http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028
|
[6] |
WANG Z, CHEN Z, WANG H W, et al. Enhancing biolo-gical nutrient removal from real domestic wastewater by using iron shavings[J]. Applied Mechanics & Materials, 2012, 164:517-520. https://www.researchgate.net/publication/258576329_Enhancing_Biological_Nutrient_Removal_from_Real_Domestic_Wastewater_by_Using_Iron_Shavings
|
[7] |
SONG X S, WANG S Y, WANG Y H, et al. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 91:487-494. doi: 10.1016/j.ecoleng.2016.03.013
|
[8] |
HU M H, AO Y S, YANG X E, et al. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system[J]. Agricultural Water Management, 2008, 95(5): 607-615. doi: 10.1016/j.agwat.2008.01.001
|
[9] |
住房城乡建设部, 环境保护部.城市黑臭水体整治工作指南[S/OL]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html.
|
[10] |
国家环保局本书编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
|
[11] |
IAMCHATURAPATR J, SU W Y, RHEE J S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering, 2007, 29(3):287-293. doi: 10.1016/j.ecoleng.2006.09.010
|
[12] |
WANG C Y, SAMPLE D J. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds[J]. Journal of Environmental Management, 2014, 137(4):23-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88247e6ce0e33457b4edb8b0d697cd79
|
[13] |
LI Y Q, LI Z H, JIANG Y H, et al. Study on the changes of physiological indexes of water spinach in eutrophication water[J]. Agricultural Science & Technology, 2010(11/12):73-76. http://cn.bing.com/academic/profile?id=c0967c3cd33157763d3bff2dbd7930df&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
鞠峰, 胡勇有.铁屑内电解技术的强化方式及改进措施研究进展[J].环境科学学报, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001
JU F, HU Y Y. Advance in enhanced patterns and improvement measures of iron inner electrolysis[J]. Acta Scientiae Circumstantiae, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001
|
[15] |
汪大翚, 雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社, 2001.
|
[16] |
STOTTMEISTER U, WIESSNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003, 22(1):93-117. doi: 10.1016-j.biotechadv.2003.08.010/
|
[17] |
WHITE S A, COUSINS M M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff[J]. Ecological Engineering, 2013, 61(8):207-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec9cb9363ca6fb158926f5d565efcd70
|
[18] |
朱静平, 程凯. 3种水培植物根系分泌的有机酸对氮循环菌的影响[J].环境工程学报, 2011(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042
ZHU J P, CHENG K. Effect of organic acids exuded from hydroponic plants roots on nitrogen cycling bacteria[J]. Chinese Journal of Environmental Engineering, 2011, 5(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042
|
[19] |
DENG S, LI D, YANG X, et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 219:677-686. http://cn.bing.com/academic/profile?id=4e6e76318ce5ab918fcb3d71c3ff8dfa&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
DENG S H, LI D S, YANG X, et al. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process[J]. Environmental Science and Pollution Research, 2016, 23(6):5361-5373. doi: 10.1007/s11356-015-5711-0
|
[21] |
SAEED T, SUN G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112:429-448. doi: 10.1016/j.jenvman.2012.08.011
|
[22] |
ZHOU Q, ZHU H, BAÑUELOS G, et al. Impacts of vegetation and temperature on the treatment of domestic sewage in constructed wetlands incorporated with Ferric-Carbon micro-electrolysis material[J]. International Journal of Phytoremediation, 2017, 19(10):915-924. doi: 10.1080/15226514.2017.1303811
|
[23] |
LI X N, SONG H L, LI W, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water[J]. Ecological Engineering, 2010, 36(4):382-390. doi: 10.1016/j.ecoleng.2009.11.004
|
[24] |
MAI Y Z, LAI Z N, LI X H, et al. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2018, 136:309-321. doi: 10.1016/j.marpolbul.2018.09.013
|
[25] |
孙井梅, 刘晓朵, 汤茵琪, 等.微生物-生物促生剂协同修复河道底泥:促生剂投量对修复效果的影响[J].中国环境科学, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041
SUN J M, LIU X D, TANG Y Q, et al. Microorganism and biostimulant collaboratively remediate river sediment:influence of biostimulant quantity on repair performance[J]. China Environmental Science, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041
|
[26] |
CHOUARI R, PASLIER D L, DAEGELEN P, et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environmental Microbiology, 2010, 7(8):1104-1115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1462-2920.2005.00795.x
|
[27] |
WANG W F, CAO L X, TAN H G, et al. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(22):9699-9707. doi: 10.1007/s00253-016-7800-5
|
[28] |
张承铭.辽河保护区典型湿地净化特性及微生物群落结构研究[D].西安: 长安大学, 2017.
ZHANG C M. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[D]. Xi'an: Chang'an University, 2017.
|
[29] |
操家顺, 李欲如, 陈娟.水蕹菜对重污染河道净化及克藻功能[J].水资源保护, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010
CAO J S, LI Y R, CHEN J. Purification of seriously polluted river by Ipomoea aquatica and its allelopathic effect on algae[J]. Water Resources Protection, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010
|
[30] |
廖绍安, 黄捷畅, 王安利, 等.碳源和盐度对好氧反硝化细菌脱氮特性的影响[J].华南师范大学学报(自然科学版), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005
LIAO S A, HUANG J C, WANG A L, et al. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005
|
[31] |
邓时海.催化Fe-C内电解与生物耦合深度脱除污水厂尾水中氮的机制与技术[D].北京: 北京交通大学, 2017.
DENG S H. Mechanism and technology study on the advanced nitrogen removal of tail water from WWTP by the coupling process between catalyzed Fe-C micro-electro-lysis and biological process[D]. Beijing: Beijing Jiaotong University, 2017.
|
[32] |
孔强.富营养化水体生态修复中高效微生物的研究[D].济南: 山东师范大学, 2010.
KONG Q. Study on efficient microorganisms in eutrophic water ecological restoration[D]. Jinan: Shandong Normal University, 2010.
|
[33] |
CHAKRAVARTHY S S, PANDE S, KAPOOR A, et al. Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp.[J]. Applied Biochemistry and Biotechnology, 2011, 165(1):260-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ab8ddc18f1e4cbeb9a6ea25b4c88a3
|
1. |
欧阳光,彭海红,罗冬林. 基于关联挖掘算法的网络数据可追踪共享仿真. 计算机仿真. 2023(05): 380-384 .
![]() | |
2. |
刘志锴,宋晖,潘达儒,陈奋超. 节点-区域关联度感知的区域数据分发算法. 华南师范大学学报(自然科学版). 2020(01): 112-121 .
![]() |