• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Shengnan, LIAO Zicong, HU Yongyou. Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 38-48. DOI: 10.6054/j.jscnun.2019083
Citation: CHEN Shengnan, LIAO Zicong, HU Yongyou. Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 38-48. DOI: 10.6054/j.jscnun.2019083

Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica

More Information
  • Received Date: March 14, 2019
  • Available Online: March 08, 2021
  • Iron-carbon interior electrolysis combined with Ipomoea aquatica was established to treat black and odorous water. The single factor experiment was adopted through variable-controlling to study the effects of different planting density, dosage of iron-carbon, dosage of ceramsite on denitrification. After 22 days, the removal rates of TN and NH4+-N were 74.1% and 99.6% respectively and their contents were stabilized below (13.65±1.24) mg/L and (0.18±0.04) mg/L respectively under the suitable conditions of the planting density at 80 plants/m2, the dosage of iron-carbon at 18 g/L and the dosage of ceramsite at 52 g/L. Besides the abundance and the diversity of microoganisms were increased, the dominant bacterial phyla being Proteobacteria, Firmicutes and Bacteroidetes and the dominant bacterial genera being Pseudomonas, Escherichia-Shigella and Diaphorobacter, enabling the microbial community to be more suitable for the removal of nitrogen. The synergistic mechanism of the coupled system included: iron-carbon interior electrolysis could generate [H] and Fe2+ as electron donor of autotrophic denitrification, radial oxygen loss in Ipomoea aquatica could promote the nitration reaction, biofilm of ceramic and rhizospheric microorganism could denitrify, and ceramsite could absorb nutrient. This study provided the basis for the treatment of black and odorous water with iron-carbon interior electrolysis combined with Ipomoea aquatica.
  • [1]
    SUN L P, LIU Y, JIN H. Nitrogen removal from polluted river by enhanced floating bed grown canna[J]. Ecological Engineering, 2009, 35(1):135-140. doi: 10.1016/j.ecoleng.2008.09.016
    [2]
    聂玉华.微曝气强化生态浮床对污水中氮元素的去除效果研究[D].成都: 西南交通大学, 2015.

    NIE Y H. Study on the decontamination performance of nitrogen in polluted water by micro-aeration enhanced ecological floating bed[D]. Chengdu: Southwest Jiaotong University, 2015.
    [3]
    CAO W P, ZHANG Y Q. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates[J]. Ecological Engineering, 2014, 62(1):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aac52e57aa4af49276928fa4e7ac0c2
    [4]
    WANG W H, WANG Y, LI Z, et al. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water[J]. Science of the Total Environment, 2018, 622/623:1630-1639. doi: 10.1016/j.scitotenv.2017.10.035
    [5]
    王梦月, 马鲁铭.催化铁强化低碳废水生物反硝化过程的探讨[J].环境科学, 2014, 35(7):2633-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028

    WANG M Y, MA L M. Investigation of enhanced low carbon wastewater denitrification by catalytic iron[J]. Environmental Science, 2014, 35(7):2633-2638 http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028
    [6]
    WANG Z, CHEN Z, WANG H W, et al. Enhancing biolo-gical nutrient removal from real domestic wastewater by using iron shavings[J]. Applied Mechanics & Materials, 2012, 164:517-520. https://www.researchgate.net/publication/258576329_Enhancing_Biological_Nutrient_Removal_from_Real_Domestic_Wastewater_by_Using_Iron_Shavings
    [7]
    SONG X S, WANG S Y, WANG Y H, et al. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 91:487-494. doi: 10.1016/j.ecoleng.2016.03.013
    [8]
    HU M H, AO Y S, YANG X E, et al. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system[J]. Agricultural Water Management, 2008, 95(5): 607-615. doi: 10.1016/j.agwat.2008.01.001
    [9]
    住房城乡建设部, 环境保护部.城市黑臭水体整治工作指南[S/OL]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html.
    [10]
    国家环保局本书编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [11]
    IAMCHATURAPATR J, SU W Y, RHEE J S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering, 2007, 29(3):287-293. doi: 10.1016/j.ecoleng.2006.09.010
    [12]
    WANG C Y, SAMPLE D J. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds[J]. Journal of Environmental Management, 2014, 137(4):23-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88247e6ce0e33457b4edb8b0d697cd79
    [13]
    LI Y Q, LI Z H, JIANG Y H, et al. Study on the changes of physiological indexes of water spinach in eutrophication water[J]. Agricultural Science & Technology, 2010(11/12):73-76. http://cn.bing.com/academic/profile?id=c0967c3cd33157763d3bff2dbd7930df&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    鞠峰, 胡勇有.铁屑内电解技术的强化方式及改进措施研究进展[J].环境科学学报, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001

    JU F, HU Y Y. Advance in enhanced patterns and improvement measures of iron inner electrolysis[J]. Acta Scientiae Circumstantiae, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001
    [15]
    汪大翚, 雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社, 2001.
    [16]
    STOTTMEISTER U, WIESSNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003, 22(1):93-117. doi: 10.1016-j.biotechadv.2003.08.010/
    [17]
    WHITE S A, COUSINS M M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff[J]. Ecological Engineering, 2013, 61(8):207-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec9cb9363ca6fb158926f5d565efcd70
    [18]
    朱静平, 程凯. 3种水培植物根系分泌的有机酸对氮循环菌的影响[J].环境工程学报, 2011(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042

    ZHU J P, CHENG K. Effect of organic acids exuded from hydroponic plants roots on nitrogen cycling bacteria[J]. Chinese Journal of Environmental Engineering, 2011, 5(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042
    [19]
    DENG S, LI D, YANG X, et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 219:677-686. http://cn.bing.com/academic/profile?id=4e6e76318ce5ab918fcb3d71c3ff8dfa&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    DENG S H, LI D S, YANG X, et al. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process[J]. Environmental Science and Pollution Research, 2016, 23(6):5361-5373. doi: 10.1007/s11356-015-5711-0
    [21]
    SAEED T, SUN G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112:429-448. doi: 10.1016/j.jenvman.2012.08.011
    [22]
    ZHOU Q, ZHU H, BAÑUELOS G, et al. Impacts of vegetation and temperature on the treatment of domestic sewage in constructed wetlands incorporated with Ferric-Carbon micro-electrolysis material[J]. International Journal of Phytoremediation, 2017, 19(10):915-924. doi: 10.1080/15226514.2017.1303811
    [23]
    LI X N, SONG H L, LI W, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water[J]. Ecological Engineering, 2010, 36(4):382-390. doi: 10.1016/j.ecoleng.2009.11.004
    [24]
    MAI Y Z, LAI Z N, LI X H, et al. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2018, 136:309-321. doi: 10.1016/j.marpolbul.2018.09.013
    [25]
    孙井梅, 刘晓朵, 汤茵琪, 等.微生物-生物促生剂协同修复河道底泥:促生剂投量对修复效果的影响[J].中国环境科学, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041

    SUN J M, LIU X D, TANG Y Q, et al. Microorganism and biostimulant collaboratively remediate river sediment:influence of biostimulant quantity on repair performance[J]. China Environmental Science, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041
    [26]
    CHOUARI R, PASLIER D L, DAEGELEN P, et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environmental Microbiology, 2010, 7(8):1104-1115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1462-2920.2005.00795.x
    [27]
    WANG W F, CAO L X, TAN H G, et al. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(22):9699-9707. doi: 10.1007/s00253-016-7800-5
    [28]
    张承铭.辽河保护区典型湿地净化特性及微生物群落结构研究[D].西安: 长安大学, 2017.

    ZHANG C M. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[D]. Xi'an: Chang'an University, 2017.
    [29]
    操家顺, 李欲如, 陈娟.水蕹菜对重污染河道净化及克藻功能[J].水资源保护, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010

    CAO J S, LI Y R, CHEN J. Purification of seriously polluted river by Ipomoea aquatica and its allelopathic effect on algae[J]. Water Resources Protection, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010
    [30]
    廖绍安, 黄捷畅, 王安利, 等.碳源和盐度对好氧反硝化细菌脱氮特性的影响[J].华南师范大学学报(自然科学版), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005

    LIAO S A, HUANG J C, WANG A L, et al. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005
    [31]
    邓时海.催化Fe-C内电解与生物耦合深度脱除污水厂尾水中氮的机制与技术[D].北京: 北京交通大学, 2017.

    DENG S H. Mechanism and technology study on the advanced nitrogen removal of tail water from WWTP by the coupling process between catalyzed Fe-C micro-electro-lysis and biological process[D]. Beijing: Beijing Jiaotong University, 2017.
    [32]
    孔强.富营养化水体生态修复中高效微生物的研究[D].济南: 山东师范大学, 2010.

    KONG Q. Study on efficient microorganisms in eutrophic water ecological restoration[D]. Jinan: Shandong Normal University, 2010.
    [33]
    CHAKRAVARTHY S S, PANDE S, KAPOOR A, et al. Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp.[J]. Applied Biochemistry and Biotechnology, 2011, 165(1):260-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ab8ddc18f1e4cbeb9a6ea25b4c88a3
  • Cited by

    Periodical cited type(2)

    1. 欧阳光,彭海红,罗冬林. 基于关联挖掘算法的网络数据可追踪共享仿真. 计算机仿真. 2023(05): 380-384 .
    2. 刘志锴,宋晖,潘达儒,陈奋超. 节点-区域关联度感知的区域数据分发算法. 华南师范大学学报(自然科学版). 2020(01): 112-121 .

    Other cited types(0)

Catalog

    Article views (2498) PDF downloads (55) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return