• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Kejun, HAN Na, CHEN Xinran, MIAO Rui. A New Method for Feature Extraction in Emotion Recognition Based on EEG[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 6-11. DOI: 10.6054/j.jscnun.2019078
Citation: ZHANG Kejun, HAN Na, CHEN Xinran, MIAO Rui. A New Method for Feature Extraction in Emotion Recognition Based on EEG[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 6-11. DOI: 10.6054/j.jscnun.2019078

A New Method for Feature Extraction in Emotion Recognition Based on EEG

More Information
  • Received Date: July 20, 2017
  • Available Online: March 08, 2021
  • Emotional calculation is studied by means of electroencephalogram (EEG) signals. Aiming to solve the problem of difficulty in extracting EEG signal features and building large computational models, an innovative method is proposed for obtaining reliable distinctive features from EEG signals. The feature extraction method combines differential entropy with linear discriminant analysis (LDA) and can be applied to feature extraction of emotional EEG signals. Three types of emotional EEG data sets are used to conduct experiments. Experimental results show that the feature extraction method can effectively improve the performance of the EEG classification: the average accuracy is improved by 68% compared to the results of the original data set, which is 7% higher than the result obtained by feature extraction using only differential entropy. The total execution time indicates that the proposed method has a lower time complexity. The research results have important practical significance in the field of three-category EEG emotion recognition and can be effectively applied to the actual engineering field.
  • [1]
    RASHID U, NIAZI I, SIGNAL N, et al. An EEG experimental study evaluating the performance of texas instruments ads1299[J]. Sensors, 2018, 18(11):3721/1-18.
    [2]
    WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology:a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):164-173. doi: 10.1109/TRE.2000.847807
    [3]
    JIN J, SELLERS E W, ZHOU S, et al. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm[J]. International Journal of Neural Systems, 2015, 25(3):1550011/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53f49b5cf1e807c25cbc137d04522cb
    [4]
    COWIE R, DOUGLAS-COWIE E, TSAPATSOULIS N, et al. Emotion recognition in human-computer interaction[J]. IEEE Signal Processing Magazine, 2001, 18(1):32-80. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_706f13007a41d7548233e6f6399e17dd
    [5]
    ATKINSON J, CAMPOS D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers[J]. Expert Systems with Applications, 2016, 47:35-41. doi: 10.1016/j.eswa.2015.10.049
    [6]
    陈东伟, 易子川, 韩娜, 等.基于脑电图信号在复杂场景下的新型联合算法[J].华南师范大学学报(自然科学版), 2018, 50(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201806002

    CHEN D W, YI Z C, HAN N, et al. A joint algorithm for electroencephalographic signals at complex scenes[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201806002
    [7]
    ZHANG A, YANG B, HUANG L. Feature extraction of EEG signals using power spectral entropy[C]//2008 international conference on Biomedical engineering and informatics. Sanya: IEEE, 2008: 435-439.
    [8]
    BRUNNER C, BILLINGER M, VIDAURRE C, et al. A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interfaces[J]. Medical & Biological Engineering & Computing, 2011, 49(11):1337-1346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d4f3227ad9c2c2a4819c59367dcb82b
    [9]
    PETRANTONAKIS P C, HADJILEONTIADIS L J. Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis[J]. IEEE Transactions on Affective Computing, 2010, 1(2):81-97. doi: 10.1109/T-AFFC.2010.7
    [10]
    DUAN R N, ZHU J Y, LU B L. Differential entropy feature for EEG-based emotion classification[C]//2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). San Diego: IEEE, 2013: 81-84.
    [11]
    LEE H, CHOI S. PCAcombine with HMM combine with SVM for EEG pattern classification[C]//Proceedings of the Seventh International Symposium on Signal Processing and Its Applications. Paris: IEEE, 2003.
    [12]
    唐建.基于SVM-HMM混合模型的癫痫信号的特征提取与识别[D].重庆: 重庆大学, 2016. http://d.wanfangdata.com.cn/Periodical/D01014827

    TANG J. Feature extraction and recognition of Epilesy signals based on SVM-HMM mixture model[D]. Chongqing: Chongqing University, 2016. http://d.wanfangdata.com.cn/Periodical/D01014827
    [13]
    ALKAN A, KOKLUKAYA E, SUBASI A. Automatic seizure detection in EEG using logistic regression and artificial neural network[J]. Journal of Neuroscience Methods, 2005, 148(2):167-176. doi: 10.1016/j.jneumeth.2005.04.009
    [14]
    朱广明.基于EEG和fNIRS的多模态脑-机接口的特征提取与分类方法研究[D].杭州: 杭州电子科技大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10336-1017133568.htm

    ZHU G M. EEG and fNIRS based multimodal BCI: feature extraction and classification[D]. Hangzhou: Hangzhou Dianzi University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10336-1017133568.htm
    [15]
    YAZDANI A, EBRAHIMI T, HOFFMANN U. Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier[C]//2009 4th International IEEE/EMBS Conference on Neural Engineering. Antalya: IEEE, 2009: 327-330.
    [16]
    FRAIWAN L, LWEESY K, KHASAWNEH N, et al. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier[J]. Computer Methods and Programs in Biomedicine, 2012, 108(1):10-19. doi: 10.1016/j.cmpb.2011.11.005
    [17]
    樊海玮, 史双, 张博敏, 等.基于MLP改进型深度神经网络学习资源推荐算法[J/OL].计算机应用研究, 2020, 37(9).http://www.arocmag.com/article/02-2020-09-006.html.

    FAN H W, SHI S, ZHANG B M, et al. Improved deep neural network of learning resource of recommendation algorithm based on MLP[J/OL]. Application Research of Computers, 2020, 37(9). http://www.arocmag.com/article/02-2020-09-006.html.
    [18]
    GAUTAMA T, MANDIC D P, van HULLE M M. A differential entropy based method for determining the optimal embedding parameters of a signal[C]//2003 IEEE International Conference on Acoustics, Speech, and Signal Processing.[S.l.]: IEEE, 2003: 6-29.
    [19]
    KAMBHATLA N, LEEN T K. Dimension reduction by local principal component analysis[J]. Neural Computation, 1997, 9(7):1493-1516. doi: 10.1162/neco.1997.9.7.1493

Catalog

    Article views (2949) PDF downloads (174) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return