Citation: | ZHANG Kejun, HAN Na, CHEN Xinran, MIAO Rui. A New Method for Feature Extraction in Emotion Recognition Based on EEG[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 6-11. DOI: 10.6054/j.jscnun.2019078 |
[1] |
RASHID U, NIAZI I, SIGNAL N, et al. An EEG experimental study evaluating the performance of texas instruments ads1299[J]. Sensors, 2018, 18(11):3721/1-18.
|
[2] |
WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology:a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):164-173. doi: 10.1109/TRE.2000.847807
|
[3] |
JIN J, SELLERS E W, ZHOU S, et al. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm[J]. International Journal of Neural Systems, 2015, 25(3):1550011/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f53f49b5cf1e807c25cbc137d04522cb
|
[4] |
COWIE R, DOUGLAS-COWIE E, TSAPATSOULIS N, et al. Emotion recognition in human-computer interaction[J]. IEEE Signal Processing Magazine, 2001, 18(1):32-80. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_706f13007a41d7548233e6f6399e17dd
|
[5] |
ATKINSON J, CAMPOS D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers[J]. Expert Systems with Applications, 2016, 47:35-41. doi: 10.1016/j.eswa.2015.10.049
|
[6] |
陈东伟, 易子川, 韩娜, 等.基于脑电图信号在复杂场景下的新型联合算法[J].华南师范大学学报(自然科学版), 2018, 50(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201806002
CHEN D W, YI Z C, HAN N, et al. A joint algorithm for electroencephalographic signals at complex scenes[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201806002
|
[7] |
ZHANG A, YANG B, HUANG L. Feature extraction of EEG signals using power spectral entropy[C]//2008 international conference on Biomedical engineering and informatics. Sanya: IEEE, 2008: 435-439.
|
[8] |
BRUNNER C, BILLINGER M, VIDAURRE C, et al. A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interfaces[J]. Medical & Biological Engineering & Computing, 2011, 49(11):1337-1346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d4f3227ad9c2c2a4819c59367dcb82b
|
[9] |
PETRANTONAKIS P C, HADJILEONTIADIS L J. Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis[J]. IEEE Transactions on Affective Computing, 2010, 1(2):81-97. doi: 10.1109/T-AFFC.2010.7
|
[10] |
DUAN R N, ZHU J Y, LU B L. Differential entropy feature for EEG-based emotion classification[C]//2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). San Diego: IEEE, 2013: 81-84.
|
[11] |
LEE H, CHOI S. PCAcombine with HMM combine with SVM for EEG pattern classification[C]//Proceedings of the Seventh International Symposium on Signal Processing and Its Applications. Paris: IEEE, 2003.
|
[12] |
唐建.基于SVM-HMM混合模型的癫痫信号的特征提取与识别[D].重庆: 重庆大学, 2016. http://d.wanfangdata.com.cn/Periodical/D01014827
TANG J. Feature extraction and recognition of Epilesy signals based on SVM-HMM mixture model[D]. Chongqing: Chongqing University, 2016. http://d.wanfangdata.com.cn/Periodical/D01014827
|
[13] |
ALKAN A, KOKLUKAYA E, SUBASI A. Automatic seizure detection in EEG using logistic regression and artificial neural network[J]. Journal of Neuroscience Methods, 2005, 148(2):167-176. doi: 10.1016/j.jneumeth.2005.04.009
|
[14] |
朱广明.基于EEG和fNIRS的多模态脑-机接口的特征提取与分类方法研究[D].杭州: 杭州电子科技大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10336-1017133568.htm
ZHU G M. EEG and fNIRS based multimodal BCI: feature extraction and classification[D]. Hangzhou: Hangzhou Dianzi University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10336-1017133568.htm
|
[15] |
YAZDANI A, EBRAHIMI T, HOFFMANN U. Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier[C]//2009 4th International IEEE/EMBS Conference on Neural Engineering. Antalya: IEEE, 2009: 327-330.
|
[16] |
FRAIWAN L, LWEESY K, KHASAWNEH N, et al. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier[J]. Computer Methods and Programs in Biomedicine, 2012, 108(1):10-19. doi: 10.1016/j.cmpb.2011.11.005
|
[17] |
樊海玮, 史双, 张博敏, 等.基于MLP改进型深度神经网络学习资源推荐算法[J/OL].计算机应用研究, 2020, 37(9).http://www.arocmag.com/article/02-2020-09-006.html.
FAN H W, SHI S, ZHANG B M, et al. Improved deep neural network of learning resource of recommendation algorithm based on MLP[J/OL]. Application Research of Computers, 2020, 37(9). http://www.arocmag.com/article/02-2020-09-006.html.
|
[18] |
GAUTAMA T, MANDIC D P, van HULLE M M. A differential entropy based method for determining the optimal embedding parameters of a signal[C]//2003 IEEE International Conference on Acoustics, Speech, and Signal Processing.[S.l.]: IEEE, 2003: 6-29.
|
[19] |
KAMBHATLA N, LEEN T K. Dimension reduction by local principal component analysis[J]. Neural Computation, 1997, 9(7):1493-1516. doi: 10.1162/neco.1997.9.7.1493
|