• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Zhi, HUANG Yulei, CHEN Limei, LIAO Kaiyu. Simulation of Wave Packet Dynamics of Quasiparticles with Different Dispersions in Cold Atomic System[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 1-5. DOI: 10.6054/j.jscnun.2019077
Citation: LI Zhi, HUANG Yulei, CHEN Limei, LIAO Kaiyu. Simulation of Wave Packet Dynamics of Quasiparticles with Different Dispersions in Cold Atomic System[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 1-5. DOI: 10.6054/j.jscnun.2019077

Simulation of Wave Packet Dynamics of Quasiparticles with Different Dispersions in Cold Atomic System

More Information
  • Received Date: May 23, 2019
  • Available Online: March 08, 2021
  • The dynamic propertic of quasi-particles with different dispersion relations is investigated based on ultra-cold atomic gases in optical lattices. Numerical simulation of quasi-particle dynamics with and without the initial velocity is conducted by means of the numerical time-splitting spectrum and Heisenberg scenario analytic solution to equations of motion, and a thorough discussion is made on the effect of quasi-momentum power in dispersion relations on the dynamics of quasi-particles. The results show that relativistic Zitterbewegung(ZB) oscillation occurs in the system given that the quasi-momentum power in dispersion relations of the quasi-particles is an odd number. However, ZB does not occur in the process of quasi-particle dynamics with an even power. Besides, the greater the power of the quasi-momentum, the higher sensitivity of the quasi-particle drift to the initial velocity of the wave packets.
  • [1]
    SCHRÖDINGER E. Uber die Kraftefreie Bewegung inder relativistischer Quantenmechanik[M]. Berlin:Sitzungsber Preuss, 1930.
    [2]
    GERRITSMA R, KIRCHMAIR G, ZÄHRINGER F, et al. Quantum simulation of the Dirac equation[J]. Nature, 2010, 463:68-71. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0909.0674
    [3]
    GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1):153-185. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232227198/
    [4]
    LLOYD S. Universal Quantum simulators[J]. Science, 1996, 273:1073-1078. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234740445/
    [5]
    CIRAC J I, ZOLLER P. Goals and opportunities in quantum simulation[J]. Nature Physics, 2012, 8(4):264-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0eeeefad3b6079d3bdcdb3f7623e45c0
    [6]
    FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6/7):467-488. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0911.1624
    [7]
    朱燕清, 张丹伟, 朱诗亮.用光晶格模拟狄拉克、外尔和麦克斯韦方程[J].物理学报, 2019, 68(4):152-161. http://d.old.wanfangdata.com.cn/Periodical/wlxb201904013

    ZHU Y Q, ZHANG D W, ZHU S L. Simulating Dirac, Weyl and Maxwell equations with cold atoms in optical lattices[J]. Acta Physica Sinica, 2019, 68(4):046701/1-8. http://d.old.wanfangdata.com.cn/Periodical/wlxb201904013
    [8]
    DAVIS K B, MEWES M, ANDREWS M R, et al. Bose-Einstein condensation in a gas of sodium atoms[J]. Physi-cal Review Letters, 1995, 75:3969-3973. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f9805022
    [9]
    ANDERSON M H, ENSHER J R, MATTHEWS M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor[J]. Science, 1995, 269:198-201.
    [10]
    TARRUELL L, GREIF D, UEHLINGER T, et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice[J]. Nature, 2012, 483:302-305. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1111.5020
    [11]
    HASEGAWA Y, KONNO R, NAKANO H, et al. Zero modes of tight binding electrons on the honeycomb lattice[J]. Physical Review B:Condensed Matter, 2006, 74(3):3413/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0604433
    [12]
    ZHU S L, WANG B, DUAN L M. Simulation and detection of Dirac fermions with cold atoms in an optical lattice[J]. Physical Review Letters, 2007, 98(26):260402/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0703454
    [13]
    SHAO L B, ZHU S L, SHENG L, et al. Realizing and detecting the Quantum Hall Effect without Landau Levels by using ultracold atoms[J]. Physical Review Letters, 2008, 101(24):246810/1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ce09518e8854431a871f15562e60f22
    [14]
    ZHANG D W, WANG Z D, ZHU S L. Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Frontiers of Physics, 2012, 7(1):31-53. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1203.5949
    [15]
    DIETL P, FRÉDÉRIC P, MONTAMBAUX G. New magnetic field dependence of Landau Levels in a graphenelike structure[J]. Physical Review Letters, 2008, 100(23):236405/1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7be29a0e86994d78c21194fffcab674e
    [16]
    GOERBIG M O, FUCHS J N, MONTAMBAUX G, et al. Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3[J]. Physical Review B:Condensed Matter, 2008. 78(2):045415/1-11.
    [17]
    黄肖健, 许文刚, 廖开宇, 等.六角晶格中Dirac准粒子的动力学模拟与操控[J].华南师范大学学报(自然科学版), 2019, 51(2):7-13. http://journal-n.scnu.edu.cn/CN/abstract/abstract4515.shtml

    HUANG X J, XU W G, LIAO K Y, et al. Simulation and manipulation of Dirac Quasiparticles' dynamics in a hexagonal lattice[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2):7-13. http://journal-n.scnu.edu.cn/CN/abstract/abstract4515.shtml
    [18]
    PEREIRA V M, CASTRO N A H, PERES N M R. Tight-binding approach to uniaxial strain in graphene[J]. Physical Review B:Condensed Matter, 2009, 80(4):045401/1-8. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0811.4396
    [19]
    WUNSCH B, GUINEA F, SOLS F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices[J]. New Journal of Physics, 2008, 10:103027/1-15. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0807.4245
    [20]
    VOLOVIK G E. Quantum phase transitions from topology in momentum space[M]. Berlin:Springer, 2006.
    [21]
    MONTAMBAUX G, PICHON F, FUCHS J N, et al. Merging of Dirac points in a two-dimensional crystal[J]. Physical Review B:Condensed Matter, 2009, 80:153412/1-4. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0904.2117
    [22]
    WANG L, FU L B. Interaction-induced merging of Dirac points in non-Abelian optical lattices[J]. Physical Review A, 2013, 87:053612/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cc99a4e01c01ddee77643faa5ada992
    [23]
    LI Z, CAO H, FU L B. Zitterbewegung for ultracold atoms in the merging of Dirac points[J]. Physical Review A, 2015, 91:023623/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa64018cf90679cc9e0fc48c60b51013
    [24]
    LI Z, WANG H Q, ZHANG D W, et al. Dynamics of Weyl quasiparticles in an optical lattice[J]. Physical Review A, 2016, 94:043617/1-7.
    [25]
    SHEN X, LI Z. Topological characterization of a one-dimensional optical lattice with a force[J]. Physical Review A, 2018, 97:013608/1-7.
  • Cited by

    Periodical cited type(1)

    1. 梁冉. 无线射频能量收集与存储系统设计. 无线互联科技. 2023(03): 1-4 .

    Other cited types(4)

Catalog

    Article views (2007) PDF downloads (80) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return