• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
GU Wen, NI Junna. The Relationship between Similar Invariant Subspaces and Invariant Subspaces[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 100-103. DOI: 10.6054/j.jscnun.2019072
Citation: GU Wen, NI Junna. The Relationship between Similar Invariant Subspaces and Invariant Subspaces[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 100-103. DOI: 10.6054/j.jscnun.2019072

The Relationship between Similar Invariant Subspaces and Invariant Subspaces

More Information
  • Received Date: September 19, 2018
  • Available Online: March 21, 2021
  • The concept of "similar invariant subspace" is defined and the relationship between similar invariant subspace and invariant subspace under the conditions of reversible linear transformation and general linear transformation is discussed. Using the theory of vector space, it is proved that similar invariant subspace is equivalent to invariant subspace under the condition of reversible linear transformation. Furthermore, it is proved that for a linear transformation σ of vector space V, if W is a similar invariant subspace, W must be an invariant subspace.
  • [1]
    周晓阳, 石岩月, 卢玉峰.多圆盘的加权Bergman空间上的不变子空间和约化子空间[J].中国科学:数学, 2011, 41(5):427-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201105004

    ZHOU X Y, SHI Y Y, LU Y F. Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc[J]. Scientia Sinica:Mathematica, 2011, 41(5):427-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201105004
    [2]
    JIE S X, GUANG F C. Wandering subspaces and quasi-wandering subspaces in the Hardy-Sobolev spaces[J]. Acta Mathematica Sinica:English Series, 2017, 33(12):1684-1692. doi: 10.1007/s10114-017-7041-2
    [3]
    XU X M, FANG X C, GAO F G. Principal invariant subspaces theorems[J]. Linear & Multilinear Algebra:An International Journal Publishing Articles, Reviews and Pro-blems, 2014, 62(10):1428-1436. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0233696766/
    [4]
    朱春蓉, 窦彩玲.一般非齐次非线性扩散方程的等价变换和高维不变子空间[J].数学年刊:A辑, 2015, 36(3):291-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201503006

    ZHU C R, DOU C L. Equivalent transformations and higher-dimensional invariant subspaces of generalized inhomogeneous nonlinear diffusion equations[J]. Chinese Annals of Mathematics:Series A, 2015, 36(3):291-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201503006
    [5]
    左苏丽, 勾明, 李吉娜, 等. Black-Scholes方程的条件Lie-Backlund对称和不变子空间[J].工程数学学报, 2015, 32(6):883-892. doi: 10.3969/j.issn.1005-3085.2015.06.009

    ZUO S L, GOU M, LI J N, et al. Conditional Lie-Backlund symmetry and invariant subspace for Black-Scholes equation[J]. Chinese Journal of Engineering Mathema-tics, 2015, 32(6):883-892. doi: 10.3969/j.issn.1005-3085.2015.06.009
    [6]
    MA W X, LIU Y P. Invariant subspaces and exact solutions of a class of dispersive evolution equations[J]. Communications in Nonlinear Science and Numerical Simu-lation, 2012, 17(10):3795-3801. doi: 10.1016/j.cnsns.2012.02.024
    [7]
    BYERS R, KRESSNER D. Structured condition numbers for invariant subspaces[J]. SIAM Journal on Matrix Analy-sis and Applications, 2006, 28(2):326-347. doi: 10.1137/050637601
    [8]
    BEATTLE C, EMBREE M, ROSSI J. Convergence of restarted Krylov subspaces to invariant subspaces[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 25(4):1074-1109. doi: 10.1137/S0895479801398608
    [9]
    YOUSEFI B, KHOSHDEL S, JAHANSHAHI Y. Multiplication operators on invariant subspaces of function spaces[J]. Acta Mathematica Scientia:Series B, 2013, 33(5):1463-1470. doi: 10.1016/S0252-9602(13)60096-X
    [10]
    POPOV A I, RADJAVI H, MARCOUX L W. On almost-invariant subspaces and approximate commutation[J]. Journal of Functional Analysis, 2013, 264(4):1088-1111. doi: 10.1016/j.jfa.2012.11.010
    [11]
    BROWN S W, CHEVREAN B, PEARCY C. On the structure of contraction operators Ⅱ[J]. Journal of Functional Analysis, 1988(76):1-29. https://www.sciencedirect.com/science/article/pii/002212368890047X
    [12]
    BROWN S W. Hyponormal operators with thick spectra have invariant subspaces[J]. Annals of Mathematics, 1987(125):93-103. doi: 10.2307-1971289/
    [13]
    JOHNSON W B, LINDENSTRAUSS J. Handbook of the geometry of Banach spaces[M]. North Holland:Elsevier, 2001:85-122.
    [14]
    ANSARI S, ENFLO P. Extremal vectors and invariant subspaces[J]. Transactions of the American Mathematical, 1998, 350(2):539-558. doi: 10.1090/S0002-9947-98-01865-0
    [15]
    IZUCHI K J, IZUCHI K H. Rank-one cross commutators on backward shift invariant subspaces on the bidisk[J]. Acta Mathematica Sinica, 2009, 25(5):693-714. doi: 10.1007/s10114-009-7215-7
    [16]
    GOHBERG I, LANCASTER P, RODMAN L. Invariant subspaces of matrices with applications[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2006:671-672.
    [17]
    CHEN J J, WANG X F, XIA J, et al. Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball[J]. Frontiers of Mathematics in China, 2017, 12(4):769-785. doi: 10.1007/s11464-017-0640-5
    [18]
    张禾瑞, 郝鈵新.高等代数[M]. 5版.北京: 高等教育出版社, 2007: 163-233.

Catalog

    Article views (2051) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return