• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061
Citation: HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 32-38. DOI: 10.6054/j.jscnun.2019061

Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid

More Information
  • Received Date: October 22, 2018
  • Available Online: March 21, 2021
  • Molecularly imprinted solid-phase extraction (MISPE) microspheres were prepared using L-glutamic acid, 2-acrylamido-2-methyl propane sulfonic acid and N, N-methylene bis-acrylamide as template, functional monomer and cross-linker respectively and using the reversible addition-fragmentation chain transfer polymerization. Then the imprinted silica gel microspheres were characterized with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). The results of the extraction experiment showed that MIPs exhibited excellent performance in separating glutamic acid from soy sauce, and an extraction capacity up to 140 μg/g was achieved. The rapid analysis of L-glutamic was realized by combining MISPE with high performance liquid chromatography technology. The linearity of L-glutamic acid was 1.47~58.9 μg/mL and the detection limit was 44.1 ng/mL. The recovery rate was 77.8%~82.2%.
  • [1]
    ASHIUCHI M, FUKUSHIMA K, OYA H, et al. Development of antimicrobial thermoplastic material from archaeal poly-γ-L-glutamate and its nanofabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(5):1619-1624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f94025f0f6ab9f702f6bd758f2f121a
    [2]
    HUTCHINGS J A, SHIELDSM R, BIANCHI T S, et al. A rapid and precise method for the analysis of underivatized amino acids in natural samples using volatile-ion-pairing reverse-phase liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Organic Geochemistry, 2018, 115:46-56. doi: 10.1016/j.orggeochem.2017.10.007
    [3]
    PEI D N, ZHANG A Y, PAN X Q, et al. Electrochemical sensing of Bisphenol A on facet-tailored TiO2 single crystals engineered by inorganic-framework molecular imprinting sites[J]. Analytical Chemistry, 2018, 90(5): 3165-3173. doi: 10.1021/acs.analchem.7b04466
    [4]
    XIE C, ZHOU H, GAO S, et al. Molecular imprinting met-hod for on-line enrichment and chemiluminescent detection of the organophosphate pesticide triazophos[J]. Microchimica Acta, 2010, 171(3/4):355-362.
    [5]
    QIN Y P, JIA C, HE X W, et al. Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation-precipitation polymerization for simultaneous recognition of human serum albumin and transferrin[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9060-9068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45ce3e43084efc730dfb232df1ed887f
    [6]
    胡小刚, 汤又文.分子印迹聚合物制备技术研究进展[J].华南师范大学学报(自然科学版), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027

    HU X G, TANG Y W. Progress in preparation technique of molecularly imprinted polymer[J]. Journal of South China Normal University (Natural Science Edition), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027
    [7]
    陈忻, 陈晓刚, 潘嘉慧, 等.莱克多巴胺新型分子印迹纳米管膜的研究及应用[J].华南师范大学学报(自然科学版), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008

    CHEN Q, CHEN X G, PAN J H, et al. Novel molecularly imprinted polymer nanotube membranes for ractopamine[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008
    [8]
    HU X, PAN J, HU Y, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. Journal of Chromatography A, 2008, 1188(2):97-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1688a76e2861133073cb4c762ca5075
    [9]
    胡小刚, 汤又文.分子印迹固相萃取-紫外分光光度法测定阿司匹林的研究[J].华南师范大学学报(自然科学版), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017

    HU X G, TANG Y W. The quantitative analysis of aspirin by molecularly imprinted solid-phase extraction technique[J]. Journal of South China Normal University(Natural Science Edition), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017
    [10]
    SONG Z, HUANG Y, PRASAD V, et al. Preparation of surfactant-resistant polymersomes with ultrathick Membranes through RAFT dispersion polymerization[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17033-17037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccabb81baa65fa79b3abdfae8f2d0a9b
    [11]
    GANACHAUD F, MONTEIRO M J, GILBERT R G, et al. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization[J]. Macromolecules, 2000, 33(18):6738-6745. doi: 10.1021/ma0003102
    [12]
    SOYLEMEZ M A, GUVEN O, BARSBAY M. Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization[J]. European Polymer Journal, 2018, 103:21-30. doi: 10.1016/j.eurpolymj.2018.03.037
    [13]
    CHEN F, WANG J, CHEN H, et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues[J]. Applied Surface Science, 2018, 435:247-255. doi: 10.1016/j.apsusc.2017.11.061
    [14]
    ROMANO E F, SO R C, DONNE S W, et al. Preparation and binding evaluation of histamine-imprinted microspheres via conventional thermal and RAFT-mediated free-radical polymerization[J]. ACS Omega, 2016, 1(4):518-531. doi: 10.1021/acsomega.6b00144
    [15]
    SHANMUGAM S, CUTHBERT J, KOWALEWSKI T, et al. Catalyst-free selective photoactivation of RAFT polymerization:a facile route for preparation of comblike and bottlebrush polymers[J]. Macromolecules, 2018, 51(19):7776-7784. doi: 10.1021/acs.macromol.8b01708
    [16]
    COSSON S, DANIAL M, SAINT-AMANS J R, et al. Accelerated combinatorial high throughput star polymer synthesis via a rapid one-pot sequential aqueous RAFT (rosa-RAFT) polymerization scheme[J]. Macromolecular Rapid Communications, 2017, 38(8):1600780/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d5ca08f9dc0be1f4f9c573feb4ce93d
    [17]
    ZHAO M, CHEN X, ZHANG H, et al. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry[J]. Biomacromolecules, 2014, 15(5):1663-1675. doi: 10.1021/bm500086e

Catalog

    Article views (2108) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return