Citation: | Huang Bingyuan. Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6): 113-118. DOI: 10.6054/j.jscnun.2017167 |
[1]Fan J, Gao H, Guo B.Regularity criteria for the Navier--Stokes--Landau--Lifshitz system[J].Journal of Mathematical Analysis and Applications, 2010, 363(1):29-37
[2]Zhai X, Li Y, Yan W.Global solutions to the Navier--Stokes--Landau--Lifshitz system[J]., 2015, :-
[3]Jun Choe H, Kim H.Strong solutions of the Navier--Stokes equations for nonhomogeneous incompressible fluids[J].Communications in Partial Differential Equations, 2003, 28(5):1183-1201
[4]Kim H.A Blow Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations[J].SIAM journal on mathematical analysis, 2006, 37(5):1417-1434
[5]GUO B L, DING S J.Landau-Lifschitz Equations[M]. Singapore, World Scientific, 2008.
[6]Wen H Y, Ding S J.Solutions of incompressible hydrodynamic flow of liquid crystals[J].Nonlinear Analysis: Real World Applications, 2011, 12(3):1510-1531
[7]Lin F H, Lin J Y, Wang C Y.Liquid crystal flows in two dimensions[J].Arch. Ration. Mech. Anal, 2010, 197(1):297-336
[8]Ding S J, Huang J R, Xia F G.Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum[J].Filomat, 2013, 27(7):1247-1257
[9]丁时进.液晶模型的分析理论[J].华南师范大学学报自然科学版, 2013, 45(3):1-7
[10]Huang T, Wang C Y, Wen H Y.Strong solutions of the compressible nematic liquid crystal flow[J].J. Diff. Eqs, 2012, 252(3):2222-2265
[11]Nirenberg L.On elliptic partial differential equations[J].Annali della Scuola Normale Superiore di Pisa--Classe di Scienze, 1959, 13(2):115-162
[12]Ladyzhenskaya O A, Solonnikov V A.Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids[J].Journal of Soviet Mathematics, 1978, 9(5):697-749
[13]Galdi G P.An introduction to the mathematical theory of the Navier-Stokes equations. Linearized Steady Problems, Vol.1, Springer Tracts in Natural Philosophy. Vol.38[M], New York, Springer-Verlag, 1994.
[1]Fan J, Gao H, Guo B.Regularity criteria for the Navier--Stokes--Landau--Lifshitz system[J].Journal of Mathematical Analysis and Applications, 2010, 363(1):29-37
[2]Zhai X, Li Y, Yan W.Global solutions to the Navier--Stokes--Landau--Lifshitz system[J]., 2015, :-
[3]Jun Choe H, Kim H.Strong solutions of the Navier--Stokes equations for nonhomogeneous incompressible fluids[J].Communications in Partial Differential Equations, 2003, 28(5):1183-1201
[4]Kim H.A Blow Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations[J].SIAM journal on mathematical analysis, 2006, 37(5):1417-1434
[5]GUO B L, DING S J.Landau-Lifschitz Equations[M]. Singapore, World Scientific, 2008.
[6]Wen H Y, Ding S J.Solutions of incompressible hydrodynamic flow of liquid crystals[J].Nonlinear Analysis: Real World Applications, 2011, 12(3):1510-1531
[7]Lin F H, Lin J Y, Wang C Y.Liquid crystal flows in two dimensions[J].Arch. Ration. Mech. Anal, 2010, 197(1):297-336
[8]Ding S J, Huang J R, Xia F G.Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum[J].Filomat, 2013, 27(7):1247-1257
[9]丁时进.液晶模型的分析理论[J].华南师范大学学报自然科学版, 2013, 45(3):1-7
[10]Huang T, Wang C Y, Wen H Y.Strong solutions of the compressible nematic liquid crystal flow[J].J. Diff. Eqs, 2012, 252(3):2222-2265
[11]Nirenberg L.On elliptic partial differential equations[J].Annali della Scuola Normale Superiore di Pisa--Classe di Scienze, 1959, 13(2):115-162
[12]Ladyzhenskaya O A, Solonnikov V A.Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids[J].Journal of Soviet Mathematics, 1978, 9(5):697-749
[13]Galdi G P.An introduction to the mathematical theory of the Navier-Stokes equations. Linearized Steady Problems, Vol.1, Springer Tracts in Natural Philosophy. Vol.38[M], New York, Springer-Verlag, 1994.
|