李雪, 刘利, 赫文豪, 张润青, 王晓慧. 地质埋存下CO2在盖层中吸附扩散行为的微观机理研究[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 18-26. doi: 10.6054/j.jscnun.2024003
引用本文: 李雪, 刘利, 赫文豪, 张润青, 王晓慧. 地质埋存下CO2在盖层中吸附扩散行为的微观机理研究[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 18-26. doi: 10.6054/j.jscnun.2024003
LI Xue, LIU Li, HE Wenhao, ZHANG Runqing, WANG Xiaohui. Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 18-26. doi: 10.6054/j.jscnun.2024003
Citation: LI Xue, LIU Li, HE Wenhao, ZHANG Runqing, WANG Xiaohui. Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 18-26. doi: 10.6054/j.jscnun.2024003

地质埋存下CO2在盖层中吸附扩散行为的微观机理研究

Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed

  • 摘要: 为解决温室气体减排领域中二氧化碳(CO2)地质埋存的关键问题,采用分子模拟手段(巨正则蒙特卡洛模拟、分子动力学模拟、密度泛函理论),对CO2在SiO2纳米狭缝中的吸附扩散行为进行了理论计算研究。研究表明:在SiO2纳米狭缝中,CO2吸附量随着压力的升高和温度的降低而增强,且亲水性的SiO2纳米狭缝比亲油性SiO2纳米狭缝的CO2吸附量大;随着狭缝宽度的增加,CO2吸附和扩散能力也逐渐增强。此外,根据吸附能、吸附高度和电荷转移量等参数分析了CO2在不同润湿性SiO2表面吸附的微观机理。研究结果为理解不同岩石物性的SiO2狭缝表面与CO2的相互作用机制提供了分子水平上的见解,这对于解释CO2分子在盖层中的吸附机理以及在地层中的长期封存具有重要的理论指导意义。

     

    Abstract: To address the critical issues related to carbon dioxide (CO2) geological sequestration in the context of greenhouse gas mitigation, The adsorption and diffusion behaviors of CO2 within SiO2 slits were investigated using molecular simulation techniques, including grand canonical Monte Carlo simulations, molecular dynamics simulations, and density functional theory. The findings reveal that the adsorption of CO2 intensifies with increasing pressure and decreasing temperature. Additionally, hydrophilic SiO2 slits exhibit a higher CO2 adsorption capacity compared to hydrophobic SiO2 slits. Moreover, as the width of SiO2 slits increases, both the adsorption and diffusion capabilities of CO2 gradually enhanced. Furthermore, the adsorption energy, adsorption height, and charge transfer were conducted to elucidate the microscopic mechanisms governing CO2 adsorption on SiO2 surfaces with varying wettability. The results provide molecular-level insights into the interaction mechanisms between CO2 molecules and SiO2 nano confinement surfaces with different rock properties. The result contributes valuable theoretical guidance for understanding the adsorption mechanisms of CO2 in caprock formations and its long-term sequestration in geological reservoirs.

     

/

返回文章
返回