留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性

欧阳柏平 侯春娟

欧阳柏平, 侯春娟. 一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 103-109. doi: 10.6054/j.jscnun.2023041
引用本文: 欧阳柏平, 侯春娟. 一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 103-109. doi: 10.6054/j.jscnun.2023041
OUYANG Baiping, HOU Chunjuan. Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 103-109. doi: 10.6054/j.jscnun.2023041
Citation: OUYANG Baiping, HOU Chunjuan. Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 103-109. doi: 10.6054/j.jscnun.2023041

一类具有非线性项的弱耦合半线性双波动系统全局解的非存在性

doi: 10.6054/j.jscnun.2023041
基金项目: 

广东省基础与应用基础研究基金省市联合基金项目 2021A1515111048

广东省普通高校重点项目(自然科学) 2019KZDXM042

广州华商学院校内项目 2020HSDS01

详细信息
    通讯作者:

    欧阳柏平, Email: oytengfei79@tom.com

  • 中图分类号: O175.4

Nonexistence of Global Solutions to a Class of Weakly Coupled Semilinear Double-Wave System with Nonlinear Terms

  • 摘要: 考虑了一类非线性项的弱耦合半线性双波动系统在次临界情况下解的爆破问题:首先,引入若干时变泛函,结合微分不等式方法,得到了该泛函的迭代框架和第一下界;然后,运用迭代技巧和切片方法,证明了该双波动系统柯西问题解的爆破,并推出了其解的生命跨度上界。
  • [1] AGEMI R, KUROKAWA Y, TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):87-133. doi: 10.1006/jdeq.2000.3766
    [2] DEL SANTO D. Global existence and blow-up for a hyperbolic system in three space dimensions[J]. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste, 1997, 29(1/2):115-140.
    [3] DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system:the critical case[J]. Differential Equa-tions, 1998, 34(9):1157-1163.
    [4] GEORGIEV V, TAKAMURA H, ZHOU Y. The lifespan of solutions to nonlinear systems of a high dimensional wave equation[J]. Nonlinear Analysis, 2006, 64(10):2215-2250. doi: 10.1016/j.na.2005.08.012
    [5] KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7):1239-1275.
    [6] KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its applications to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27(2):417-448.
    [7] KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4):363-382.
    [8] CHEN W H, REISSIG M. Blow-up of solutions to Nakao's problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:733-756. doi: 10.1016/j.jde.2020.11.009
    [9] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete & Continuous Dynamical Systems, 2020, 40(9):5513-5540.
    [10] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2):361-374. doi: 10.1016/j.jfa.2005.03.012
    [11] LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-depen-dent damping related to Glassey's conjecture[J]. Diffe-rential Integral Equations, 2019, 32(1/2):37-48.
    [12] 高云龙, 林荣瑞, 佘连兵, 等. 带有强阻尼时滞项的m-Laplacian型波方程解的爆破[J]. 华南师范大学学报(自然科学版), 2021, 53(1):94-99. doi: 10.6054/j.jscnun.2021015

    GAO Y L, LIN R R, SHE L B, et al. Blow-up of solutions to the m-laplacian type wave equation with strong delay terms[J]. Journal of South China Normal University(Na-tural Science Edition), 2021, 53(1):94-99. doi: 10.6054/j.jscnun.2021015
    [13] 欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5):1372-1381. doi: 10.3969/j.issn.1003-3998.2021.05.011

    OUYANG B P, XIAO S Z. Nonexistence of global solutions for a semilinear double-wave equation with a nonli-near memory term[J]. Acta Mathematica Scientia, 2021, 41(5):1372-1381. doi: 10.3969/j.issn.1003-3998.2021.05.011
    [14] 欧阳柏平, 肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 山东大学学报(理学版), 2021, 56(9):59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202109008.htm

    OUYANG B P, XIAO S Z. Global nonexistence of solutions to a class of semilinear double-wave equations with space-dependent coefficients on the nonlinearity[J]. Journal of Shandong University(Natural Science), 2021, 56(9):59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202109008.htm
    [15] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:112160/1-23.
    [16] CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2):67/1-21.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回