留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类含梯度项的奇异抛物型方程弱解的存在性

张亚茹 夏莉

张亚茹, 夏莉. 一类含梯度项的奇异抛物型方程弱解的存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 96-102. doi: 10.6054/j.jscnun.2023040
引用本文: 张亚茹, 夏莉. 一类含梯度项的奇异抛物型方程弱解的存在性[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 96-102. doi: 10.6054/j.jscnun.2023040
ZHANG Yaru, XIA Li. Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 96-102. doi: 10.6054/j.jscnun.2023040
Citation: ZHANG Yaru, XIA Li. Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 96-102. doi: 10.6054/j.jscnun.2023040

一类含梯度项的奇异抛物型方程弱解的存在性

doi: 10.6054/j.jscnun.2023040
基金项目: 

国家自然科学基金项目 11971200

广东省教育厅科研项目[特色创新项目] 2018KTSCX069

广东省教育厅委托项目 0835-210Z33606691

详细信息
    通讯作者:

    夏莉, Email: xaleysherry@163.com

  • 中图分类号: O175.26

Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms

  • 摘要: 文章研究一类具有Dirichlet边界条件和初始条件的含梯度项奇异抛物型偏微分方程: $\left\{\begin{array}{l}y_t-y^{\prime \prime}-\frac{\kappa}{r} y^{\prime}+\lambda \frac{\left|y^{\prime}\right|^2}{y^m}=f(r, t) \quad(y \geqslant 0, (r, t) \in(0, 1) \times(0, T]), \\y(0, t)=y(1, t)=0 \ \ \ \ \ \quad(t \in(0, T]), \\y(r, 0)=\varphi(r) \quad(r \in(0, 1)), \end{array}\right.$ 其中, T>0, κ≥0, λ>0, m∈(0, 2)。由于含梯度的奇异抛物型方程中具有奇异项和非线性项, 故先利用抛物正则化方法将方程进行正则化, 再结合上下解方法, 证明了在不同假设条件下的该类方程非负弱解的存在性。最后, 证明了该方程的弱比较原理。
  • [1] PEDRO J M, PETITTA F. Parabolic equations with nonli-near singularities[J]. Nonlinear Analysis, 2011, 74(1): 114-131. doi: 10.1016/j.na.2010.08.023
    [2] XIA L, YAO Z A. Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation[J]. Journal of Mathematical Analysis and Applications, 2009, 358(1): 182-188. doi: 10.1016/j.jmaa.2009.04.039
    [3] 运东方, 黄淑祥. 一类奇异项依赖于梯度的奇异偏微分方程的研究[J]. 数学物理学报, 2012, 32A(5): 861-878. doi: 10.3969/j.issn.1003-3998.2012.05.005

    YUN D F, HUANG S X. On a class of singular equations with nonlinear terms depending on the gradient[J]. Acta Mathematica Scientia, 2012, 32A(5): 861-878. doi: 10.3969/j.issn.1003-3998.2012.05.005
    [4] ARCOYA D, CARMONA J, LEONORI T, et al. Existence and nonexistence of solutions for singular quadratic quasilinear equations[J]. Journal of Differential Equations, 2009, 246(10): 4006-4042. doi: 10.1016/j.jde.2009.01.016
    [5] CARMONA J, PEDRO J M, SUAERZ A. Existence and non-existence of positive solutions for nonlinear elliptic singular equations with natural growth[J]. Nonlinear Analysis, 2013, 89: 157-169. doi: 10.1016/j.na.2013.05.015
    [6] OLIVA F, PETITTA F. On singular elliptic equations with measure sources[J]. ESAIM: Control, Optimization and Calculus of Variations, 2016, 22(1): 289-308. doi: 10.1051/cocv/2015004
    [7] OLIVA F, PETITTA F. Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness[J]. Journal of Differential Equations, 2018, 264(1): 311-340. doi: 10.1016/j.jde.2017.09.008
    [8] SUN Y J, ZHANG D Z. The role of the power 3 for elliptic equations with negative exponents[J]. Calculus of Variations and Partial Differential Equations, 2014, 49(3/4): 909-922.
    [9] CANINO A, SCIUNZI B, TROMBETTA A. Existence and uniqueness for p-Laplace equations involving singular nonlinearities[J]. Nonlinear Differential Equations and Applications, 2016, 23(2): 1-18.
    [10] DALLAGLIO A, ORSINA L, PETITTA F. Existence of solutions for degenerate parabolic equations with singular terms[J]. Nonlinear Analysis, 2016, 131: 273-288. doi: 10.1016/j.na.2015.06.030
    [11] OLIVA F, PETITTA F. A nonlinear parabolic problem with singular terms and nonregular data[J]. Nonlinear Analysis, 2020, 194: 111472/1-13.
    [12] MAGLIOCCA M, OLIVA F. On some parabolic equations involving superlinear singular gradient terms[J]. Journal of Evolution Equations, 2021, 21(2): 2547-2590. doi: 10.1007/s00028-021-00695-1
    [13] ZHOU W S, LEI P D. A one-dimensional nonlinear heat equation with a singular term[J]. Journal of Mathematical Analysis and Applications, 2010, 368(2): 711-726. doi: 10.1016/j.jmaa.2010.03.066
    [14] ZHOU W S. Positive solutions for a singular second order boundary value problem[J]. Applied Mathematics E-Notes, 2009, 9: 154-159.
    [15] 夏莉, 李敬娜. 带梯度项的奇异抛物方程古典解的研究[J]. 暨南大学学报(自然科学与医学版), 2014, 35(6): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX201406013.htm

    XIA L, LI J N. Classical solutions for some singular parabolic equations with gradient term[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2014, 35(6): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX201406013.htm
    [16] XIA L, ZHANG Y Y. Nonnegative classical solutions for some singular parabolic equation[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2015, 30: 124-128.
    [17] LADYZENSKAJA O A, SOLONNIKOV V A, URALC'EVA N N. Linear and quasi-linear equations of parabolic type[M]. Providence, Rhode Island: American Mathematical Society, 1988.
    [18] XIA L, LI J N, LIU Q. Existence of weak solutions for some singular parabolic equation[J]. Acta Mathematica Scientia, 2016, 36(6): 1651-1661. doi: 10.1016/S0252-9602(16)30097-2
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-13
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回