留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物光谱技术结合多元统计分析的消毒效果快速评价方法

刘婧 赵佳慧 熊倩 邓文靖 刘芳 胡立新

刘婧, 赵佳慧, 熊倩, 邓文靖, 刘芳, 胡立新. 基于生物光谱技术结合多元统计分析的消毒效果快速评价方法[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 55-63. doi: 10.6054/j.jscnun.2023036
引用本文: 刘婧, 赵佳慧, 熊倩, 邓文靖, 刘芳, 胡立新. 基于生物光谱技术结合多元统计分析的消毒效果快速评价方法[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 55-63. doi: 10.6054/j.jscnun.2023036
LIU Jing, ZHAO Jiahui, XIONG Qian, DENG Wenjing, LIU Fang, HU Lixin. New Insights into Biological Effects of Disinfectants Against Bacteria Exploiting Biospectroscopy Techniques Coupled with Multivariate Analysis[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 55-63. doi: 10.6054/j.jscnun.2023036
Citation: LIU Jing, ZHAO Jiahui, XIONG Qian, DENG Wenjing, LIU Fang, HU Lixin. New Insights into Biological Effects of Disinfectants Against Bacteria Exploiting Biospectroscopy Techniques Coupled with Multivariate Analysis[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 55-63. doi: 10.6054/j.jscnun.2023036

基于生物光谱技术结合多元统计分析的消毒效果快速评价方法

doi: 10.6054/j.jscnun.2023036
基金项目: 

广东省科技计划项目 2019B030301008

详细信息
    通讯作者:

    刘芳, Email: liufang77@m.scnu.edu.cn

  • 中图分类号: O433.4

New Insights into Biological Effects of Disinfectants Against Bacteria Exploiting Biospectroscopy Techniques Coupled with Multivariate Analysis

  • 摘要: 利用傅立叶变换红外光谱研究了次氯酸钠、过氧化氢和紫外线对革兰氏阴性大肠杆菌(Escherichia coli)和革兰氏阳性海氏肠球菌(Enterococcus hirae)的生物学效应。结果表明:细菌失活和光谱变化之间存在显著的相关性,而且不同消毒剂和细菌引起的效果曲线也明显不同。革兰氏阴性菌比革兰氏阳性菌更容易受消毒剂的影响。NaClO对膜透性、蛋白质和脂类氧化的生物效应最为显著,其次是H2O2光解产生的HO ·自由基的氧化效应,最后是紫外辐射对DNA的损伤作用。研究结果为了解消毒过程的生物效应提供了新的见解,并为优化消毒过程、确保水安全提供了科学依据。
  • 图  1  NaClO、H2O2和UV对E.coliE.hirae的暴露剂量-对数杀灭关系

    Figure  1.  The antimicrobial activity of NaClO, H2O2 and UV on E.coli and E.hirae

    图  2  不同剂量消毒剂处理E.coli的红外光谱分析

    Figure  2.  The analysis of FTIR spectra from E.coli treated with increasing doses of disinfectants

    图  3  不同剂量消毒剂处理的E.hirae的红外光谱分析

    Figure  3.  The analysis of FTIR spectra from E.hirae treated with increasing doses of disinfectants

    图  4  E.coliE.hirae 2-log灭活状态下的红外光谱PCA-LDA得分图和聚类向量图

    Figure  4.  The PCA-LDA scores plots and cluster vectors of FTIR spectra obtained from E.coli and E.hirae at the 2-log inactivation

    图  5  消毒能力与生物变化的回归分析

    Figure  5.  The correlation analysis between the disinfection capacity and the biological alterations

    表  1  不同剂量消毒剂处理的E.coliE.hirae的前5个峰的峰指认

    Table  1.   The peak assignments for the top five peaks from the loadings plots for E.coli and E.hirae treated with different doses of disinfectants

    消毒剂 E.coli E.hirae
    波长/cm-1 特征峰识别 波长/cm-1 特征峰识别
    NaClO 1 543 酰胺II 1 624 酰胺I
    NaClO 1 624 酰胺I 1 061 C—C骨架
    NaClO 1 030 C—O伸缩振动 995 RNA
    NaClO 1 084 对称磷酸伸缩振动 1 161 C—OH伸缩振动
    NaClO 1 747 脂质 1 658 酰胺I
    H2O2 1 543 酰胺II 999 糖原
    H2O2 1 608 酰胺I 1 624 酰胺I
    H2O2 1 670 酰胺I 1 246 非对称磷酸伸缩振动
    H2O2 1 724 脂质 1 064 C—O伸缩振动
    H2O2 1 018 糖原 1 523 酰胺II
    UV 1 651 酰胺I 1 662 酰胺I
    UV 987 蛋白质磷酸化 1 701 脂质
    UV 1 597 酰胺I 1 520 酰胺II
    UV 1 107 糖原 1 215 非对称磷酸伸缩振动
    UV 1 230 非对称磷酸伸缩振动 1 030 糖原
    下载: 导出CSV
  • [1] MAZHAR M A, KHAN N A, AHMED S, et al. Chlorination disinfection by-products in Municipal drinking water: a review[J]. Journal of Cleaner Production, 2020, 273(10): 123159/1-13.
    [2] HONG T M, NGUYE N, POONYANOOC H, et al. Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse[J]. Water Research, 2019, 153: 53-62. doi: 10.1016/j.watres.2019.01.006
    [3] WIGGINTON K R, PECSON B M, SIGSTAM T, et al. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity[J]. Environmental Science & Technology, 2012, 46(21): 12069-12078.
    [4] 易在炯, 田桢干, 朱仁义, 等. 化学消毒剂灭活病毒效果评价方法与影响因素分析[J]. 中国口岸科学技术, 2021, 12(3): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZOSJ202112014.htm
    [5] EGGERS M, SCHWEBKE I, SUCHOMEHL M, et al. The European tiered approach for virucidal efficacy testing- rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases[J]. Eurosurveillance, 2021, 26(3): 1-7.
    [6] 奚兵, 汤敏. 不同试验方法对某种抗菌洗剂杀菌效果的比较[J]. 江苏预防医学, 2008, 19(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYF200804033.htm
    [7] OBINAJU B E, MARTIN F L. ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: results of a field study in the Niger Delta[J]. Environment International, 2016, 89/90: 93-101. doi: 10.1016/j.envint.2016.01.012
    [8] STRONG R J, HALSALL C J, JONES K C, et al. Infrared spectroscopy detects changes in an amphibian cell line induced by fungicides: comparison of single and mixture effects[J]. Aquatic Toxicology, 2016, 178: 8-18. doi: 10.1016/j.aquatox.2016.07.005
    [9] LEWIS P D, LEWIS K E, GHOSAL R, et al. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum[J]. BMC Cancer, 2010, 10(1): 1-10. doi: 10.1186/1471-2407-10-1
    [10] JAMES O, HOLLY J B, et al. Spectrochemical analysis of sycamore (Acer pseudoplatanus) leaves for environmental health monitoring[J]. The Analytical Journal of the Royal Society of Chemistry, 2016, 141(10): 2896-2903.
    [11] PANG W, LI J, AHMADZAI A A, et al. Identification of benzo[a]pyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis[J]. Toxicology, 2012, 298: 24-29. doi: 10.1016/j.tox.2012.04.009
    [12] BAKER M J, TREVISAN J, BASSAN P, et al. Using Fourier transform IR spectroscopy to analyze biological materials[J]. Nature Protocols, 2014, 9(8): 1771-1791. doi: 10.1038/nprot.2014.110
    [13] LABJANI V, HOTI V, POURAN H M, et al. Bimodal responses of cells to trace elements: insights into their mechanism of action using a biospectroscopy approach[J]. Chemosphere, 2014, 112: 377-384. doi: 10.1016/j.chemosphere.2014.03.117
    [14] MARTIN F L, KELLY J G, LLABJANI V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11): 1748-1760. doi: 10.1038/nprot.2010.133
    [15] LI J, STRONG R, TREVISAN J, et al. Dose-related alterations of carbon nanoparticles in Mammalian cells detected using biospectroscopy: potential for real-world effects[J]. Environmental Science & Technology, 2013, 47(17): 10005-10011.
    [16] TREVISAN J, ANGELOV P P, SCOTT A D, et al. IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis[J]. Bioinformatics, (8): 1095-1097.
    [17] RIDING M J, MARTIN F L, TREVISAN J, et al. Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis[J]. Environmental Pollution, 2012, 163: 226-234. doi: 10.1016/j.envpol.2011.12.027
    [18] KELLY A H, RICHARD F S, et al. Vibrational biospectroscopy characterizes biochemical differences between cell types used for toxicological investigations and identifies alterations induced by environmental contaminants[J]. Environmental Toxicology and Chemistry, 2017, 36(11): 3127-3137. doi: 10.1002/etc.3890
    [19] HIDALGO E, BARTOLOME R, DOMINGUEZ C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness[J]. Chemico-Biological Interactions, 2002, 139(3): 265-282. doi: 10.1016/S0009-2797(02)00003-0
    [20] CHO M, KIM J, KIM J Y, et al. Mechanisms of Escherichia coli inactivation by several disinfectants[J]. Water Research, 2010, 44(11): 3410-3418. doi: 10.1016/j.watres.2010.03.017
    [21] HASHEMINIA S, R FARHAD A, SAATCHI M, et al. Synergistic antibacterial activity of chlorhexidine and hydrogen peroxide against Enterococcus faecalis[J]. Journal of Oral Science, 2013, 55(4): 275-280. doi: 10.2334/josnusd.55.275
    [22] KOEBNIK R, LOCHER K P, GELDER P V. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Molecular Microbiology, 2010, 37(2): 239-253.
    [23] DZWOLAK W, SMIRNOVAS V. A conformational α-helix to β-sheet transition accompanies racemic self-assembly of polylysine: a FT-IR spectroscopic study[J]. Biophysical Chemistry, 2005, 115(1): 49-54. doi: 10.1016/j.bpc.2005.01.003
    [24] CARDAMONE J M. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)[J]. Journal of Molecular Structure, 2010, 969: 97-105. doi: 10.1016/j.molstruc.2010.01.048
    [25] HUTH K C, JAKOB F M, SAUGEL B, et al. Effect of ozone on oral cells compared with established antimicrobials[J]. European Journal of Oral Sciences, 2006, 114(5): 435-440. doi: 10.1111/j.1600-0722.2006.00390.x
    [26] AKEN B V, LIN L S. Effect of the disinfection agents chlorine, UV irradiation, silver ions, and TiO2 nanoparticles/near-UV on DNA molecules[J]. Water Science & Technology, 2011, 64(6): 1226-1232.
    [27] FUKUZAKI S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes[J]. Biocontrol Science, 2006, 11(4): 147-157. doi: 10.4265/bio.11.147
    [28] BAKER R W. Studies on the reaction between sodium hypochlorite and proteins[J]. Biochemical Journal, 1947, 41(3): 337-342. doi: 10.1042/bj0410337
    [29] CHEN P, EGGLESTON P A. Allergenic proteins are fragmented in low concentrations of sodium hypochlorite[J]. Clinical and Experimental Allergy, 2001, 31(7): 1086-1093. doi: 10.1046/j.1365-2222.2001.01127.x
    [30] ZHAI S, ZHANG W M, LI T, et al. Sodium hypochlorite assisted membrane cleaning: alterations in the characteristics of organic foulants and membrane permeability[J]. Chemosphere, 2018, 211: 139-148. doi: 10.1016/j.chemosphere.2018.07.144
    [31] KONG J, YU S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2010, 39(8): 549-559.
    [32] RATTANAKUL S, OGUMA K. Analysis of Hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine[J]. Environmental Science & Technology, 2016, 51(1): 455-462.
    [33] IKAI H, NAKAMURA K, SHIRATO M, et al. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation[J]. Antimicrob Agents Chemother, 2010, 54(12): 86-91.
    [34] AL-ASSAF S, PHILLIPS G O, DEEBLE D J, et al. The enhanced stability of the cross-linked hylan structure to hydroxyl (OH) radicals compared with the uncross-linked hyaluronan[J]. Radiation Physics & Chemistry, 1995, 46(2): 207-217.
    [35] TAGLIETTI A, FERNANDEZ Y D, AMATO E, et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria[J]. Langmuir, 2012, 28(21): 8141-8148.
    [36] MASSIMILIANO G, LEENA L, MARIKKI L. Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses[J]. Nucleic Acids Research, 2003, 31(16): 4779-4790.
    [37] KAPOOR M, HAMM R, YAN W, et al. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation[J]. Oncogene, 2000, 19(3): 358-364.
    [38] JANSSENS V, GORIS J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling[J]. Biochemical Journal, 2001, 353: 417-439.
    [39] JAMIESON E R, LIPPARD S J. Structure, recognition, and processing of cisplatin-DNA adducts[J]. Chemical Reviews, 1999, 99(9): 2467-2498.
    [40] KRIPKE M L, COX P A, ALAS L G, et al. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice[J]. Proceedings of the National Academy of Sciences, 1992, 89(16): 7516-7520.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回