留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的钠离子电池剩余使用寿命预测

史永胜 翟欣然 胡玙珺

史永胜, 翟欣然, 胡玙珺. 基于机器学习的钠离子电池剩余使用寿命预测[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 17-24. doi: 10.6054/j.jscnun.2023031
引用本文: 史永胜, 翟欣然, 胡玙珺. 基于机器学习的钠离子电池剩余使用寿命预测[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 17-24. doi: 10.6054/j.jscnun.2023031
SHI Yongsheng, ZHAI Xinran, HU Yujun. Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 17-24. doi: 10.6054/j.jscnun.2023031
Citation: SHI Yongsheng, ZHAI Xinran, HU Yujun. Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 17-24. doi: 10.6054/j.jscnun.2023031

基于机器学习的钠离子电池剩余使用寿命预测

doi: 10.6054/j.jscnun.2023031
基金项目: 

国家自然科学基金项目 22279076

陕西省科技厅工业科技攻关计划项目 2019GY-175

详细信息
    通讯作者:

    翟欣然,Email: 210611008@sust.edu.cn

  • 中图分类号: TM912

Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries

  • 摘要: 钠离子电池容量退化具有非线性和复杂性,准确预测剩余使用寿命(RUL)十分困难,因此构建SSA优化算法结合梯度提升回归树(GBRT)的RUL预测模型。对实验数据进行滤波平滑处理,绘制容量增量(IC)曲线,从IC曲线中提取与容量衰减相关性高的健康指标(HI),即IC峰值、峰值对应的电压值、峰值面积以及峰值斜率。利用PCA算法对数据进行降维处理以减少数据间的冗余性,将处理后的数据输入GBRT模型,并采用SSA算法寻找最优超参数提高预测精度。利用多组老化实验数据进行验证,RMSE、MAPE和MAE分别在15.2、7%、11.2以下,结果表明该模型有较高的预测精度及稳健性且优于其他主流算法。
  • 图  1  充放电策略

    Figure  1.  The charging and discharging strategy

    图  2  钠离子电池的容量衰减曲线

    Figure  2.  The capacity decay curves of sodium ion batteries

    图  3  未滤波处理的IC曲线

    Figure  3.  The unfiltered IC curves

    图  4  电压平台与IC曲线

    Figure  4.  The voltage plateau and the IC curves

    图  5  放电IC曲线

    Figure  5.  The IC curves for discharge

    图  6  钠离子电池RUL预测流程

    Figure  6.  The RUL prediction process for sodium ion batteries

    图  7  SSA迭代曲线

    Figure  7.  The fitness curves

    图  8  RUL预测结果对比以及误差分布

    Figure  8.  The comparison of RUL prediction results and error distribution

    图  9  评价指标对比

    Figure  9.  The comparison of evaluation indicators

    图  10  评价指标平均值

    Figure  10.  The average of evaluation indicators

    表  1  HI与RUL的相关系数

    Table  1.   The correlation coefficient between health indicators and RUL

    充放电倍率 HI1 HI2 HI3 HI4
    2.0C 0.937 0.831 0.994 0.757
    1.5C 0.924 0.845 0.989 0.701
    1.0C 0.941 0.826 0.968 0.797
    下载: 导出CSV

    表  2  SSA参数设置

    Table  2.   Parameter settings for SSA

    参数名称 数值
    变量维度 3
    麻雀的总数 30
    最大迭代次数 10
    预警值 0.8
    发现者比例 0.2
    下载: 导出CSV

    表  3  GBRT参数设置

    Table  3.   Parameter setting for GBDT

    倍率 决策树数量 决策树的最大深度 学习率
    2.0C 92 20 0.884 8
    1.5C 30 20 0.865 9
    1.0C 84 20 0.743 7
    下载: 导出CSV
  • [1] 陈鹏飞, 冯杰仪, 吴镝. 高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040

    CHEN P F, FENG J Y, WU D. The preparation and performance of Li6.4La3Zr1.4Ta0.6O12-based lithium boron anode for the high energy density all-solid-state lithium metal battery[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
    [2] USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035. doi: 10.1038/s41578-021-00324-w
    [3] 菅夏琰, 金俊腾, 王瑶, 等. 钠离子电池层状氧化物正极材料研究进展[J]. 工程科学学报, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm

    JIAN X Y, JIN J T, WANG Y, et al. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm
    [4] 陈晓秋, 汝强, 王朕, 等. 高容量钠离子电池SnSbCo/rGO负极材料[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954

    CHEN X Q, RU Q, WANG Z, et al. SnSbCo/rGO anodes of high capacity sodium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954
    [5] 肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测[J]. 电工技术学报, 2022, 37(17): 4517-4527. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm

    XIAO Q, MU Y F, JIAO Z P, et al. Improved LightGBM based remaining useful life prediction of lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm
    [6] ZHU R, CHEN Y, PENG W, et al. Bayesian deep-learning for RUL prediction: an active learning perspective[J]. Reliability Engineering & System Safety, 2022, 228: 108758/1-15.
    [7] AHWIADI M, WANG W. An enhanced particle filter technology for battery system state estimation and RUL prediction[J]. Measurement, 2022, 191: 110817/1-9. doi: 10.1016/j.measurement.2022.110817
    [8] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm

    HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm
    [9] LI W, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: 118114/1-16. doi: 10.1016/j.apenergy.2021.118114
    [10] LUO K, CHEN X, ZHENG H, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 159-173. doi: 10.1016/j.jechem.2022.06.049
    [11] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm

    XU J N, NI Y L, ZHU C B. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm
    [12] CHEHADE A A, HUSSEIN A A. A collaborative Gaussian process regression model for transfer learning of capacity trends between Li-ion battery cells[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9542-9552.
    [13] QIN P, ZHAO L, LIU Z. State of health prediction for lithium-ion battery using a gradient boosting-based data-driven method[J]. Journal of Energy Storage, 2022, 47: 103644/1-23.
    [14] 刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm

    LIU S Z, YUAN L H, ZHANG C, et al. State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm
    [15] ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456.
    [16] ZHU J, DEWI DARMA M S, KNAPP M, et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance[J]. Journal of Power Sources, 2020, 448: 227575/1-12.
    [17] 周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm

    ZHOU C J, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm
    [18] LI X, WANG Z, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114.
    [19] LIN C P, CABRERA J, YANG F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: 115338/1-12.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  13
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回