留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方法改性的镍负载柱撑蛭石对CH4与CO2重整反应的催化性能研究

伊尔夏提·地里夏提 白翔 纳森巴特 古丽格纳·皮达买买提 何晓燕 赛亚尔·斯迪克

伊尔夏提·地里夏提, 白翔, 纳森巴特, 古丽格纳·皮达买买提, 何晓燕, 赛亚尔·斯迪克. 不同方法改性的镍负载柱撑蛭石对CH4与CO2重整反应的催化性能研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030
引用本文: 伊尔夏提·地里夏提, 白翔, 纳森巴特, 古丽格纳·皮达买买提, 何晓燕, 赛亚尔·斯迪克. 不同方法改性的镍负载柱撑蛭石对CH4与CO2重整反应的催化性能研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030
YIERXIATI Dilixiati, BAI Xiang, NASEN Bate, GULIGENA Pidamaimaiti, HE Xiaoyan, SAIYAER Sdike. The Reforming Reaction of CH4 and CO2 Zed by Nickel-loading Column Vermiculite Modified by Different Methods[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030
Citation: YIERXIATI Dilixiati, BAI Xiang, NASEN Bate, GULIGENA Pidamaimaiti, HE Xiaoyan, SAIYAER Sdike. The Reforming Reaction of CH4 and CO2 Zed by Nickel-loading Column Vermiculite Modified by Different Methods[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030

不同方法改性的镍负载柱撑蛭石对CH4与CO2重整反应的催化性能研究

doi: 10.6054/j.jscnun.2023030
基金项目: 

伊犁师范大学博士科研专项项目 BSZX2021016

伊犁师范大学校级一般项目 2017YSYY17

详细信息
    通讯作者:

    赛亚尔·斯迪克,Email: 1051116295@qq.com

  • 中图分类号: TE665.3;TQ426

The Reforming Reaction of CH4 and CO2 Zed by Nickel-loading Column Vermiculite Modified by Different Methods

  • 摘要: 采用新疆尉犁蛭石矿,依次经过HNO3酸化、600 ℃煅烧、NaCl交换,再用Keggin离子插层,得到了羟基铝柱撑蛭石。以柱撑蛭石为载体制备了一系列Ni负载的催化剂(12Ni-CPVMT、12Ni-2CaO-CPVMT、12Ni-2MgO-PCVMT)并将其应用于甲烷重整反应。结果表明:12Ni-CPVMT的催化活性仅为17 h,二氧化碳的转化率低,12Ni-2CaO-CPVMT和12Ni-2CaO-PCVMT在反应3 h内表现出较高的催化活性和稳定性,但随后观察到失活。12Ni-2MgO-CPVMT催化剂在反应22 h后,甲烷的转化率降低至17.94%,而12Ni-2CaO-CPVMT催化剂在反应24 h内表现出较高的稳定性,甲烷的转化率仅降低了1.28%。这可能与其层间结构和膨胀的蛭石中的金属氧化物有关。
  • 图  1  实验装置图

    Figure  1.  The schematic for the experimental apparatus

    图  2  载体和催化剂的XRD图谱

    Figure  2.  The XRD pattern of the carrier and the catalyst

    图  3  不同催化剂的H2-TPR谱

    Figure  3.  The H2-TPR spectra of different catalysts

    图  4  反应20 h后催化剂的热重曲线

    Figure  4.  The thermal weight curves of the catalysts after 20 h of reaction

    图  5  催化剂还原后的XPS谱

    Figure  5.  The XPS spectra of catalyst after reduction

    图  6  还原后催化剂的TEM图

    Figure  6.  The TEM images of catalysts after reduction

    图  7  不同催化剂的稳定性

    Figure  7.  The stability of different catalysts

    图  8  反应温度对12Ni-2CaO-PCVMT催化剂活性的影响

    Figure  8.  The effects of the reaction temperature on the reactivity of the 12Ni-2CaO-PCVMT catalyst

    图  9  空速对12Ni-2CaO-PCVMT催化活性的影响

    Figure  9.  The effect of air speed on the reactivity of the 12Ni-2CaO-PCVMT catalyst

  • [1] MUSTAFA A, LOUGOU B G, YONG S, et al. Current tech- nology development for CO2 utilization into solar fuels and chemicals: a review[J]. Journal of Energy Chemistry, 2020, 49(10): 96-123.
    [2] 姜建波, 薛红霞, 王昊, 等. 甲烷二氧化碳重整制合成气催化材料及工艺中试研究[J]. 齐鲁石油化工, 2018, 46(2): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QLSY201802006.htm

    ZHANG J B, XUE H X, WANG H, et al. Pilot study on the catalytic material and process of syngas made by methane carbon dioxide reforming[J]. Qilu Petrochemical Technology, 2018, 46(2): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-QLSY201802006.htm
    [3] 吴兴亮, 吕凌辉, 马清祥, 等. 甲烷二氧化碳重整镍基催化剂的研究进展[J]. 洁净煤技术, 2021, 27(3): 129-137. doi: 10.13226/j.issn.1006-6772.CE20111501

    WU X L, LÜ L H, MA Q X, et al. Research progress of nickel-based catalysts for carbon dioxide reforming of methane[J]. Clean Coal Technology, 2021, 27(3): 129-137. doi: 10.13226/j.issn.1006-6772.CE20111501
    [4] KHADIDJA G, ABDERREZAK B, GOUSSEM M, et al. Removal of organic matter from wastewater using M/Al-pillared clays (M=Fe or Mn) as coagulants[J]. Water Science and Technology, 2018, 78(3): 534-544. doi: 10.2166/wst.2018.321
    [5] MAO H T, DING Z H. Electrolytes based on nano-2D interlayer structure of Al-pillared clays for solid-state lithium battery[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13874-13888. doi: 10.1007/s10854-020-03947-x
    [6] BASIONY M S, GABER S E, et al. Synthesis and characterization of Al-pillared bentonite for remediation of chlorinated pesticide-contaminated water[J]. Clays and Clay Minerals, 2019, 68(2): 197-210.
    [7] CAMPS A, GAGEA B, MORENO S, et al. Decane hydro conversion with Al-Zr, Al-Hf, Al-Ce-pillared vermiculites[J]. Applied Catalysis A, 2008, 345(1): 112-118. doi: 10.1016/j.apcata.2008.04.031
    [8] LOULOUDI A, MICHALOPOULOS J, GANGAS N H, et al. Hydrogenation of benzene on Ni/Al-pillared saponite catalysts[J]. Applied Catalysis A, 2003, 242(1): 41-49. doi: 10.1016/S0926-860X(02)00503-3
    [9] JUN K W, KOHKOMANDUR H S, CHARY V R. Structure and catalytic properties of Ceria-based Nickel catalysts for CO2 reforming of methane[J]. Catalysis Surveys from Asia, 2007, 11(3): 97-113. doi: 10.1007/s10563-007-9026-0
    [10] 夏骏, 楼波, 廖宇燊, 等. 膨胀蛭石/LaCL3复合材料的热化学储热性能[J]. 应用化工, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202203022.htm

    XIA J, LOU B, LIAO Y S, et al. Study of the performance of expanded vermiculite/LaCl3 composite materials for thermochemical energy storage[J]. Applied Chemical Industry, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202203022.htm
    [11] 伊尔夏提·地里夏提, 古丽米热·吐尔地, 夏西木卡玛尔·买买提, 等. 镍负载柱撑蛭石催化甲烷与二氧化碳重整制合成气[J]. 应用化工, 2015, 44(4): 656-658;662. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201504019.htm

    YIERXIATI D, GULIMIRE T, XAMXIKAMAR M, et al. Oxidative CO2 reforming of CH4 over pillared vermiculite-supported nickel catalysts[J]. Applied Chemical Industry, 2015, 44(4): 656-658;662. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201504019.htm
    [12] 韦忠宇, 卢忠远, 刘辉, 等. 有机蛭石的制备工艺与催化性能[J]. 中国粉体技术, 2009, 15(5): 61-64;71. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS200905024.htm

    WEI Z Y, LU Z Y, LIU H, et al. Preparation process and catalytic properties of organic vermiculite[J]. China Power Science and Technology, 2009, 15(5): 61-64;71. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS200905024.htm
    [13] NAIDU B N, KUMAR K L, SAINI H, et al. Coke deposition over Ni-based catalysts for dry reforming of methane: effects of MgO-Al2O3 support and ceria, lanthana promoters[J]. Journal of Environmental Chemical Engineering, 2022, 10: 106980/1-14. doi: 10.1016/j.jece.2021.106980
    [14] FERRANDON M S, BYRON C, CELIK G, et al. Grafted Nickel-promoter catalysts for dry reforming of methane identified through high-throughput experimentation[J]. Applied Catalysis A, 2022, 629: 118379/1-15.
    [15] ZHANG G, LIU J, XU Y, et al. Ordered mesoporous Ni/Silica-carbon as an efficient and stable catalyst for CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4809-4820.
    [16] MENG J G, GU T T, PAN W, et al. Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane[J]. Fuel, 2022, 310: 122363/1-12.
    [17] GARCÍA-DIÉGUEZ M, PIETA I S, HERRERA M C. Nanostructured Pt- and Ni-based catalysts for CO2 -reforming of methane[J]. Journal of Catalysis, 2009, 270(1): 136-145.
  • 加载中
图(9)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回