留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于天然气联合循环发电厂CO2捕集与选择性废气再循环的Exergy分析

张振东 唐佑宁 伍卓汉

张振东, 唐佑宁, 伍卓汉. 基于天然气联合循环发电厂CO2捕集与选择性废气再循环的Exergy分析[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 1-8. doi: 10.6054/j.jscnun.2023029
引用本文: 张振东, 唐佑宁, 伍卓汉. 基于天然气联合循环发电厂CO2捕集与选择性废气再循环的Exergy分析[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 1-8. doi: 10.6054/j.jscnun.2023029
CHONG Chengtung, TANG Youning, NG Johan. Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 1-8. doi: 10.6054/j.jscnun.2023029
Citation: CHONG Chengtung, TANG Youning, NG Johan. Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 1-8. doi: 10.6054/j.jscnun.2023029

基于天然气联合循环发电厂CO2捕集与选择性废气再循环的Exergy分析

doi: 10.6054/j.jscnun.2023029
基金项目: 

科技部国际科技交流项目 21Z010802213

详细信息
    通讯作者:

    张振东, Email: ctchong@sjtu.edu.cn

  • 中图分类号: TK14

Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant

  • 摘要: 通过将选择性废气再循环(S-EGR)与联合循环的集成实现CO2的捕集和循环,以获得更高的系统运行效率。基于实际联合循环电厂的运行数据,探究了选择性废气再循环S-EGR集成对实际联合循环和碳捕集系统的影响。结果表明:S-EGR集成后分别提升碳捕集和联合循环Exergy效率6.9%和1.3%;燃烧室是联合循环中Exergy损失最大的部件,占比44.8%,其次是蒸汽轮机、凝汽器和余热锅炉,造成Exergy损失的主要原因是温差;碳捕集单元与联合循环集成后,热效率和Exergy效率都在S-EGR循环比为10%时达到峰值后逐渐降低。
  • 图  1  联合循环碳捕集与选择性废气再循环集成系统图

    Figure  1.  The integrated system diagram of combined cycle carbon capture with post-combustion carbon capture and selective exhaust gas recirculation

    图  2  集成系统加入S-EGR前后的Exergy流图

    Figure  2.  The Exergy flow of the integrated model with and without S-EGR

    图  3  联合循环和碳捕集系统的Exergy损失分布

    Figure  3.  The Exergy destruction distribution of CCGT and PCC

    图  4  S-EGR循环比对CO2体积分数、CCGT及PCC Exergy损失分布的影响

    Figure  4.  The effect of S-EGR recycle ratio on the concentration of CO2 and the exergy destruction distribution of CCGT and PCC

    图  5  S-EGR循环比对集成系统热效率和Exergy效率的影响

    Figure  5.  The effect of S-EGR recycle ratio on the thermal and exergetic efficiencies of integrated system

    表  1  CCGT、PCC和CO2选择性循环装置单元运行工况

    Table  1.   CCGT, PCC and selectively CO2 recycle unit operating conditions

    状态点 位置 质量流量/(kg·s-1) 温度/K 压力/kPa
    2 燃烧室入口 659.3 850.0 962.0
    4 天然气入口 13.2 302.0 2 911.0
    5 燃气透平出口 672.5 862.3 101.0
    7 低压余热锅炉出口 11.1 521.5 401.0
    8 中压余热锅炉出口 15.6 819.6 3 075.0
    9 高压余热锅炉出口 73.7 836.3 12 517.0
    10 余热锅炉出口烟气 672.5 363.2 101.0
    14 低压蒸汽透平出口 103.7 333.3 5.0
    15 高压蒸汽透平出口 73.7 650.0 3 058.0
    16 吸收塔入口烟气 645.1 363.2 110.0
    19 吸收塔出口贫溶剂 370.0 327.2 105.0
    21 汽提塔入口CO2 34.0 378.2 200.0
    22 汽提塔入口贫溶剂 370.0 378.2 200.0
    23 汽提塔入口贫溶剂(来自再沸器) 111.0 393.2 200.0
    24 汽提塔入口液态水 56.3 313.2 154.0
    25 汽提塔出口贫溶剂 481.0 391.2 154.0
    26 汽提塔出口CO2 34.0 388.2 154.0
    29 压缩系统出口CO2 19.8 301.2 7 300.0
    30 进入循环装置的CO2 13.2 303.2 150.0
    下载: 导出CSV

    表  2  不同气体的实验标准化学Exergy

    Table  2.   The experimental standard chemistry Exergy of different gases

    气体类型 εθ
    Carbon (solid, graphite) 410.3
    H2(gas) 236.1
    N2(gas) 0.7
    O2(gas) 4.0
    下载: 导出CSV

    表  3  关键部件的Exergy损失平衡方程

    Table  3.   The exergy destruction equation of key equipments

    组件名称 Exergy损失
    压气机 ED, COMP=E1-E2-WCV, 1
    燃烧室 ED, CC=E2+E4-E3
    燃气透平 ED, GT=E3-E5-WCV, 2
    余热锅炉 ED, HRSG=E5+E6-E7-E8-E9-E10
    蒸汽轮机 ED, ST=E11+E12+E13-E14-E15-WCV, 3
    凝汽器(CCGT) ED, CONDST=E14-E6
    吸收塔 ED, ASB=E16+E18-E17-E19
    解析塔 ED, STRP=E21+E23+E24-E25-E26+QDESORB
    再沸器 ED, REBO=E25+ESTEAM, IN-ESTEAM, OUT-E23
    凝汽器 ED, CONDPCC=E27-E28-E24
    压缩系统 ED, COMPTRAN=E28-E29
    下载: 导出CSV
  • [1] 全球碳捕集与封存研究院. 全球碳捕集与封存现状2021[R]. (2021-09-02)[2022-05-04] 2021. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-report-registration.
    [2] 田慧芳. 中国实现碳中和承诺的挑战与机遇[J]. 旗帜, 2021(6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202106022.htm

    TIAN H F. Challenges and opportunities for China to realize its carbon neutrality commitment[J]. Flag, 2021(6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202106022.htm
    [3] 中共中央国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-10-24)[2022-05-04]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
    [4] 亚洲开发银行. 中国碳捕集和封存示范与推广路线图研究[R]. (2015-11-01)[2022-05-04]. https://www.adb.org/sites/default/files/publication/175347/roa-dmap-ccs-prc-zh_0.pdf.
    [5] JIANG K. ASHWORTH P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: a bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 11052/1-16. doi: 10.1016/j.rser.2020.110521
    [6] ZHU X C, GE T S, WU J Y, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. doi: 10.1360/TB-2021-0017
    [7] 陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043

    HEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043
    [8] 鲍永武. 锅炉排烟温度高的危害及其治理[J]. 世界有色金属, 2018(11): 263-264. doi: 10.3969/j.issn.1002-5065.2018.11.150

    BAO Y W. Harm and treatment of high exhaust gas temperature of boiler[J]. World Nonferrous Metals, 2018(11): 263-264. doi: 10.3969/j.issn.1002-5065.2018.11.150
    [9] BILIYOK C, YEUNG H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration[J]. International Journal of Greenhouse Gas Control, 2013, 19: 396-405. doi: 10.1016/j.ijggc.2013.10.003
    [10] LI H, DITARANTO M, BERSTAD D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture[J]. Energy, 2011, 36(2): 1124-1133. doi: 10.1016/j.energy.2010.11.037
    [11] ELKADY A M, EVULET A B, ANTHONY B, et al. Application of exhaust gas recirculation in a DLN F-class combustion system for post-combustion CO2 capture[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 034505/1-6. doi: 10.1115/1.2982158
    [12] 李晗, 陈健. 单乙醇胺吸收CO2的热力学模型和过程模拟[J]. 化工学报, 2014, 65(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201401010.htm

    LI H, CHEN J. Thermodynamic model and process simulation of CO2 absorption by monoethanolamine[J]. Journal of Chemical Industry, 2014, 65(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201401010.htm
    [13] BELLAS J M, FINNEY K N, DIEGO M E, et al. Experimental investigation of the impacts of selective exhaust gas recirculation on a micro gas turbine[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102809/1-11. doi: 10.1016/j.ijggc.2019.102809
    [14] BEJAN A, G TSATSARONIS M M. Thermal design and optimization[M]. Manhattan: A Wiley Interscience Publication, 1996: 558.
    [15] HERRAIZ L, FERNANDEZ E S, PALFI E, et al. Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 71: 303-321. doi: 10.1016/j.ijggc.2018.01.017
    [16] MERKEL T C, WEI X T, HE Z J, et al. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1150-1159.
    [17] ALEJANDRO A M, PAPAYANOPOULOS E M, MILLARES C R. Diagnosis and redesign of power plants using combined Pinch and Exergy analysis[J]. Energy, 2014, 72: 643-651. doi: 10.1016/j.energy.2014.05.090
    [18] 周旭健, 李清毅, 陈瑶姬, 等. 化学吸收法在燃后区CO2捕集分离中的研究和应用[J]. 能源工程, 2019, 3: 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGC201903010.htm

    ZHOU X J, LI Q Y, CHEN Y J, et al. Research and application of chemical absorption method in CO2 capture and separation in post-combustion zone[J]. Energy Engineering, 2019, 3: 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGC201903010.htm
    [19] GHARAGHEIZI F, KASHKOULI P I, HEDDEN R C. Standard molar chemical exergy: a new accurate model[J]. Energy, 2018, 158: 924-935.
    [20] HE Y C, HOU Y, ZHAO H L, et al. Comparison of irreversible losses of three expansion devices[J]. Cryogenics and Super Conductivity, 2005, 33(2): 54-57.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  52
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回