留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国畜禽养殖业碳排放研究进展

翟郧秋 张芊芊 刘芳 应光国 柳王荣

翟郧秋, 张芊芊, 刘芳, 应光国, 柳王荣. 我国畜禽养殖业碳排放研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 72-82. doi: 10.6054/j.jscnun.2022046
引用本文: 翟郧秋, 张芊芊, 刘芳, 应光国, 柳王荣. 我国畜禽养殖业碳排放研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 72-82. doi: 10.6054/j.jscnun.2022046
ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 72-82. doi: 10.6054/j.jscnun.2022046
Citation: ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 72-82. doi: 10.6054/j.jscnun.2022046

我国畜禽养殖业碳排放研究进展

doi: 10.6054/j.jscnun.2022046
基金项目: 

国家自然科学基金重点项目 42030703

详细信息
    通讯作者:

    刘芳,Email: liufang77@m.scnu.edu.cn

    应光国,Email: guanguo.ying@m.scnu.edu.cn

  • 中图分类号: J653

The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China

  • 摘要: 为了实现全球气温上升不超过2 ℃的目标,探索碳减排的措施迫在眉睫。鉴于畜禽养殖业是碳排放的一个重要来源,文章综述了国内畜禽养殖业碳排放相关的研究进展,介绍了畜禽养殖业碳排放的测算方法、时空特征、影响因素与减排措施。
  • 图  1  我国畜牧养殖业碳排放的时序变化

    Figure  1.  The temporal change of carbon emission from animal husbandry in China

    图  2  畜禽养殖碳排放的空间分布

    Figure  2.  The spatial distribution of carbon emission from livestock and poultry breeding

  • [1] MA A, ZHAO H. Studies on emissions and measures of reduction and control of greenhouse gas during lifecycle of dairy products[J]. Procedia Environmental Sciences, 2012, 13: 2310-2315. doi: 10.1016/j.proenv.2012.01.220
    [2] SKEA J, SHUKLA P, KlLKlŞ Ş. Climate Change 2022: Mitigation of Climate Change[EB/OL]. https://www.ipcc.ch/report/ar6/wg3.
    [3] XUE Y N, LUAN W X, WANG H, et al. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: case study of pig farming in Liaoning, China[J]. Journal of Cleaner Production, 2019, 238: 117968/1-8.
    [4] GUO Y X, WANG Y D, CHEN S F, et al. Inventory of spatio-temporal methane emissions from livestock and poultry farming in Beijing[J]. Sustainability, 2019, 11(14): 3858/1-11.
    [5] TRUONG A H, KIM M T, NGUYEN T T, et al. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: an inventory and projection for 2000—2030[J]. Sustainability, 2018, 10(10): 3826/1-8. https://www.preprints.org/manuscript/201809.0600/v1
    [6] MISIUKIEWICZ A, GAO M, FILIPIAK W, et al. Methanogens and methane production in the digestive systems of nonruminant farm animals[J]. Animal, 2021, 15(1): 100060/1-8.
    [7] 孙康泰, 王小龙, 张建民, 等. "十三五"国家重点研发计划中的畜牧兽医科技布局与评述[J]. 畜牧兽医学报, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm

    SUN K T, WANG X L, ZHANG J M, et al. The distribution and review of national key research and development program in animal husbandry and veterinary medicine field during the 13th five-year period[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm
    [8] 田素妍, 郑微微, 周力. 中国低碳养殖的环境库兹涅茨曲线特征及其成因分析[J]. 资源科学, 2012, 34(3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm

    TIAN S Y, ZHEN W W, ZHOU L. Characteristics of environmental Kuznets curve for the low carbon breeding in China and its causes[J]. Resources Science, 2012, 34 (3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm
    [9] 师帅, 李翠霞, 李媚婷. 畜牧业"碳排放"到"碳足迹"核算方法的研究进展[J]. 中国人口·资源与环境, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm

    SHI S, LI C X, LI M T. Review of research from carbon emissions to carbon footprint in livestockhusbandry[J]. China Population, Resources and Environment, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm
    [10] 李鹏, 吴文昊, 郭伟. 连续监测方法在全国碳市场应用的挑战与对策[J]. 环境经济研究, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm

    LI P, WU W H, GUO W. The challenges and recommendations of application of the measurement-based monitoring methodology in national carbon market[J]. Journal of Environmental Economics, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm
    [11] RENAND G, MAUPETIT D. Assessing individual differences in enteric methane emission among beef heifers using the greenfeed emission monitoring system: effect of the length of testing period on precision[J]. Animal Production Science, 2016, 56(3): 218-223. doi: 10.1071/AN15429
    [12] JI B, ZHENG W, GATES R S, et al. Design and performance evaluation of the upgraded portable monitoring unit for air quality in animal housing[J]. Computers and Electronics in Agriculture, 2016, 124: 132-140. doi: 10.1016/j.compag.2016.03.030
    [13] KAIYALA K J, RAMSAY D S. Direct animal calorimetry, the underused gold standard for quantifying the fire of life[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 158(3): 252-264. https://www.sciencedirect.com/science/article/pii/S1095643310001339
    [14] GRAINGER C, CLARKE T, MCGINN S, et al. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques[J]. Journal of Dairy Science, 2007, 90(6): 2755-2766. doi: 10.3168/jds.2006-697
    [15] MADSEN J, BJERG B S, HVELPLUND T, et al. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants[J]. Livestock Science, 2010, 129: 223-227. doi: 10.1016/j.livsci.2010.01.001
    [16] NAVARRO-VILLA A, O'BRIEN M, LÓPEZ S, et al. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs[J]. Animal Feed Science and Technology, 2011, 166: 163-174. https://www.sciencedirect.com/science/article/pii/S0377840111001830
    [17] 郭鹏辉. 高寒牧区藏绵羊消化代谢与肠道甲烷排放特征[D]. 兰州: 兰州大学, 2020.

    GUO P H. The characteristics of digestion, metabolism and enteric methane emission of Tibetan sheep in the alpine pastoralarea[D]. Lanzhou: Lanzhou University, 2020.
    [18] PICKERING N, ODDY V, BASARAB J, et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants[J]. Animal, 2015, 9(9): 1431-1440. doi: 10.1017/S1751731115000968
    [19] HRISTOV A, OH J, FIRKINS J, et al. Special topics-miti-gation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options[J]. Journal of Animal Science, 2013, 91(11): 5045-5069. doi: 10.2527/jas.2013-6583
    [20] CUNHA C, LOPES N, VELOSO C, et al. Greenhouse gases inventory and carbon balance of two dairy systems obtained from two methane-estimation methods[J]. Science of the Total Environment, 2016, 571: 744-754. doi: 10.1016/j.scitotenv.2016.07.046
    [21] STORM I M, HELLWING A L F, NIELSEN N I, et al. Methods for measuring and estimating methane emission from ruminants[J]. Animals, 2012, 2(2): 160-183. doi: 10.3390/ani2020160
    [22] XU T W, ZHAO N, HU L Y, et al. Characterizing CH4, CO2 and N2O emission from barn feeding Tibetan sheep in Tibetan alpine pastoral area in cold season[J]. Atmospheric Environment, 2017, 157: 84-90. doi: 10.1016/j.atmosenv.2017.03.023
    [23] HUHTANEN P, BAYAT A R, LUND P, et al. Short communication: variation in feed efficiency hampers use of carbon dioxide as a tracer gas in measuring methane emissions in on-farm conditions[J]. Journal of Dairy Science, 2020, 103(10): 9090-9095. doi: 10.3168/jds.2020-18559
    [24] KUMARI S, FAGODIYA R, HILOIDHARI M, et al. Methane production and estimation from livestock husbandry: a mechanistic understanding and emerging mitigation options[J]. Science of the Total Environment, 2020, 709: 136135/1-14.
    [25] QIAO J Y, TAN Z L, GUAN L L, et al. Effects of hydrogen in headspace and bicarbonate in media on rumen fermentation, methane production and methanogenic population using in vitro gas production techniques[J]. Animal Feed Science and Technology, 2015, 206: 19-28. doi: 10.1016/j.anifeedsci.2015.05.004
    [26] 姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm

    YAO C S, QIAN S S, LI ZT, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism[J]. Resources Science, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm
    [27] DONG H M, ZHU Z P, LI Y E, et al. Tier Ⅱ MRV of livestock emissions in China-final report & annexes[EB/OL], 2020. http://cgspace.cgiar.org.
    [28] EGGLESTON H, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. http://dx.doi.org/10/016/S1462-9011(99)00023-4.
    [29] CHEN S Q, SONG D, YANG J, et al. Life-cycle emission mitigation inventory and environmental benefit of household biogas mode[J]. China Population, Resources and Environment, 2012, 22(8): 76-83.
    [30] LUO T, YUE Q, YAN M, et al. Carbon footprint of China's livestock system-a case study of farm survey in Sichuan Province, China[J]. Journal of Cleaner Production, 2015, 102: 136-143. doi: 10.1016/j.jclepro.2015.04.077
    [31] 李虎, 王立刚, 邱建军. 基于DNDC模型的华北典型农田氮素损失分析及综合调控途径[J]. 中国生态农业学报, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm

    LI H, WANG L G, QIU J J. Nitrate loss simulated with DNDC model and control technologies in typical cropland of North China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm
    [32] 黄文强. 规模化养殖场牛奶生产碳足迹评估方法与案例分析[D]. 北京: 中国农业科学院, 2015.

    HUANG W Q. Carbon footprint assessment methodology of milk production in intensive dairy farm and case study[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [33] MENGHISTU H T, ZENEBE A A, MAWCHA G T, et al. Greenhouse gas emission and mitigation potential from livestock production in the drylands of Northern Ethiopia[J]. Carbon Management, 2021, 12(3): 289-306. doi: 10.1080/17583004.2021.1921620
    [34] ROTZ C, MONTES F, CHIANESE D. The carbon footprint of dairy production systems through partial life cycle assessment[J]. Journal of Dairy Science, 2010, 93(3): 1266-1282. doi: 10.3168/jds.2009-2162
    [35] LESSCHEN J P, van DENBERG M, WESTHOEK H, et al. Greenhouse gas emission profiles of European livestock sectors[J]. Animal Feed Science and Technology, 2011, 166: 16-28. https://www.sciencedirect.com/science/article/pii/S0377840111001775
    [36] 林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm

    LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China's agricultural sector: current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm
    [37] MSANGI S, ENAHORO D, HERRERO M, et al. Integrating livestock feeds and production systems into agricultural multi-market models: the example of IMPACT[J]. Food Policy, 2014, 49: 365-377. doi: 10.1016/j.foodpol.2014.10.002
    [38] BRITZ W, VERBURG P H, LEIP A. Modelling of land cover and agricultural change in Europe: combining the CLUE and CAPRI-Spat approaches[J]. Agriculture, Ecosystems & Environment, 2011, 142(1/2): 40-50. https://www.sciencedirect.com/science/article/pii/S0167880910000885
    [39] WEISS F, LEIP A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model[J]. Agriculture, Ecosystems & Environment, 2012, 149: 124-134. https://www.sciencedirect.com/science/article/pii/S0167880911004415
    [40] 何炫蕾. 中国农业碳排放、农业生产效率及经济发展的实证研究[D]. 兰州: 兰州大学, 2018.

    HE X L. An empirical study on agricultural carbon emission, agricultural production efficiency and economic development in China[D]. Lanzhou: Lanzhou University, 2018.
    [41] 黄秀全. 中国农业绿色全要素生产率时空特征及影响因素研究[D]. 重庆: 重庆工商大学, 2020.

    HUANG X Q. Study on the Spatio-temporal characteristics and influencing factors of agricultural green total factor productivity in China[D]. Chongqing: Chongqing Technology and Business University, 2020.
    [42] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm

    TIAN Y, YIN M H. Re-evaluation of China's agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm
    [43] 胡双利. 基于LCA的我国畜禽产品生产碳排放评估及减排潜力研究[D]. 湘潭: 湖南科技大学, 2015.

    HU S L. Study on the evaluation of the livestock and poultry production of carbon emissions and mitigation potential in China based on LCA[D]. Xiangtan: Hunan University of Science and Technology, 2015.
    [44] 吴义根. 低碳约束下的中国农业生产率研究[D]. 北京: 中国农业大学, 2019.

    WU Y G. Research on agricultural productivity in China under low carbon emission constraints: perspective based on spatial econometrics[D]. Beijing: China Agricultural University, 2019.
    [45] 杨宁. 中国农业碳排放、水消费和增加值关系研究[D]. 大连: 东北财经大学, 2019.

    YANG N. Study on the relationship between China's agricultural carbon emissions, water consumption and added value[D]. Dalian: Dongbei University of Finance and Economics, 2019.
    [46] 苏旭峰, 杨小东, 冉启英. 基于碳排放视角的中国畜牧业绿色增长分析[J]. 生态经济, 2022, 38(4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm

    SU X F, YANG X D, RAN Q Y. Analysis on the green growth of animal husbandry in China from the perspective of carbon emissions[J]. Ecological Economy, 2022, 38 (4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm
    [47] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the CSAE, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042
    [48] 郭险峰, 艾静静. 农业碳排放的时空演变、影响因素及脱钩效应研究——基于31省2000—2019年面板数据[J]. 西昌学院学报(自然科学版), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm

    GUO X F, AI J J. Temporal and spatial variation, influencing factors and decoupling effect of agricultural carbon emissions: based on panel data of 31 provinces from 2000 to 2019[J]. Journal of Xichang University(Natural Science Edition), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm
    [49] 李潇潇, 张振东. OECD成员国碳排放效率时空演变与影响因素研究[J/OL]. 河北环境工程学院学报, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.

    LI X X, ZHANG Z D. Spatiotemporal evolution and impact of carbon emission efficiency of OECD member countries factor research[J/OL]. Journal of Hebei University of Environmental Engineering, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.
    [50] 吴强, 张园园, 张明月. 中国畜牧业碳排放的量化评估、时空特征及动态演化: 2001—2020[J]. 干旱区资源与环境, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm

    WU Q, ZHANG YY, ZHANG M Y. Quantitative assessment, temporal and spatial characteristics and dynamic evolution of China's animal husbandry carbon emissions[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm
    [51] 徐丽, 曲建升, 吴金甲, 等. 中国农牧业碳排放时空变化及预测[J]. 生态与农村环境学报, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm

    XU L, QU J S, WU J J, et al. Spatial-temporal dynamics and prediction of carbon emission from agriculture and animal husbandry in China[J]. Journal of Ecology and Rural Environment, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm
    [52] 田云. 中国低碳农业发展: 生产效率、空间差异与影响因素研究[D]. 武汉: 华中农业大学, 2015.

    TIAN Y. The development of China's low-carbon agriculture: production efficiency, spatial differences and influencing factors[D]. Wuhan: Huazhong Agricultural University, 2015.
    [53] 侯麟科, 仇焕广, 崔永伟, 等. 环境污染与畜牧业空间布局研究[J]. 中国人口·资源与环境, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm

    HOU L K, QIU H G, CUI Y W, et al. Study on environmental pollution and spatial distribution of animal husbandry[J]. China Population, Resources and Environment, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm
    [54] 陈瑶, 尚杰. 四大牧区畜禽业温室气体排放估算及影响因素分解[J]. 中国人口·资源与环境, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm

    CHEN Y, SHANG J. Estimation and effecting factor decomposition of green house gas emission of animal husbandry industry in four pastoral areas[J]. China Population Resources and Environment, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm
    [55] GUO H P, FAN B Q, PAN C L. Study on mechanisms underlying changes in agricultural carbon emissions: a case in Jilin Province, China, 1998—2018[J]. International Journal of Environmental Research Public Health, 2021, 18(3): 919/1-17.
    [56] 李俊杰. 民族地区农地利用碳排放测算及影响因素研究[J]. 中国人口·资源与环境, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm

    LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China[J]. China Population Resources and Environment, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm
    [57] XIONG C H, SU W Z, LI H P, et al. Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province[J]. Environmental Science and Pollution Research, 2022, 29: 1-11.
    [58] 詹晶, 张俊娜, 邓荣荣. 我国畜牧业低碳化发展的路径选择——基于畜牧业排放源对甲烷增长的回归分析[J]. 广西社会科学, 2012(9): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKX201209014.htm
    [59] 甘雨田. 中国奶牛产业碳排放量估算及影响因素研究[D]. 哈尔滨: 东北农业大学, 2019.

    GAN Y T. Research on the estimation and influence factors of carbon emission of dairy cattle industry in China[D]. Harbin: Northeast Agricultural University, 2019.
    [60] 孔凡斌, 王智鹏, 潘丹. 基于LCA方法的生猪产业温室气体排放时空特征分析——以鄱阳湖生态经济区为例[J]. 企业经济, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm

    KONG F B, WANG Z P, PANG D. Temporal and spatial characteristics of greenhouse gas emissions from pig industry based on LCA method-a case study of Poyang Lake Ecological Economic Zone[J]. Enterprise Economy, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm
    [61] 杜红梅, 蒋礼. 湖南省生猪养殖业碳排放的影响因素分析[J]. 黑龙江畜牧兽医, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm

    DU H M, JIANG L. Analysis on influencing factors of carbon emission from pig breeding industry in Hunan Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm
    [62] 邹洁, 项朝阳. 中国大陆畜牧业环境效率测算及影响因素研究[J]. 环境污染与防治, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm

    ZOU J, XIANG C Y. Research on the livestock environmental efficiency in mainland China and its influencing factors[J]. Environmental Pollution & Control, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm
    [63] 谢婷, 张慧, 何家军, 等. 华中地区畜牧业温室气体排放特征分析与预测[J]. 中国环境科学, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm

    XIE T, ZHANG H, HE J J, et al. Characteristics and prediction of greenhouse gas emissions from livestock industry in Central China[J]. China Environmental Science, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm
    [64] 李阳, 陈敏鹏. 中国省域农业源非CO2温室气体排放的影响因素分析与峰值预测[J]. 环境科学学报, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm

    LI Y, CHEN M P. Analysis of influencing factors and peak forecast of non-CO2 greenhouse gas emissions from provincial agricultural sources in China[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm
    [65] 郭娇, 齐德生, 张妮娅, 等. 中国畜牧业温室气体排放现状及峰值预测[J]. 农业环境科学学报, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm

    GUO J, QI D S, ZHANG N Y, et al. Chinese greenhouse gas emissions from livestock: trend and predicted peak value[J]. Journal of Agro-Environment Science, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm
    [66] LLONCH P, HASKELL M, DEWHURST R, et al. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective[J]. Animal, 2017, 11(2): 274-284. https://www.cambridge.org/core/journals/animal/article/current-available-strategies-to-mitigate-greenhouse-gas-emissions-in-livestock-systems-an-animal-welfare-perspective/2C1E6F2AA8B6608B9B5C49544EEB26F4
    [67] SCHILS R, ERIKSEN J, LEDGARD S, et al. Strategies to mitigate nitrous oxide emissions from herbivore production systems[J]. Animal, 2013, 7(S1): 29-40. https://www.cambridge.org/core/journals/animal/article/strategies-to-mitigate-nitrous-oxide-emissions-from-herbivore-production-systems/4F641EE6C19731E097520F503046EA31
    [68] WEI S, BAI Z, CHADWICK D, et al. Greenhouse gas and ammonia emissions and mitigation options from livestock production in peri-urban agriculture: Beijing-a case study[J]. Journal of Cleaner Production, 2018, 178: 515-525. https://www.sciencedirect.com/science/article/pii/S0959652617332511
    [69] YUE Q, XU X R, HILLIER J, et al. Mitigating greenhouse gas emissions in agriculture: from farm production to food consumption[J]. Journal of Cleaner Production, 2017, 149: 1011-1019. https://www.sciencedirect.com/science/article/pii/S0959652617303980
    [70] de VIVO R, ZICARELLI L. Influence of carbon fixation on the mitigation of greenhouse gas emissions from livestock activities in Italy and the achievement of carbon neutrality[J]. Translational Animal Science, 2021, 5(3): txab042/1-11.
    [71] ZHAO G, JI L S, JIA L, et al. Research and application of circular economy mode based on biogas energy as a significant technique[J]. Renewable Energy Resources, 2016, 34(10): 1574-1580.
    [72] LEWIS K A, TZILIVAKIS J, GREEN A, et al. Potential of feed additives to improve the environmental impact of European livestock farming: a multi-issue analysis[J]. International Journal of Agricultural Sustainability, 2015, 13(1): 55-68.
    [73] 毛竹, 陈虹, 孙瑞钧, 等. 我国海洋碳汇建设现状、问题及建议[J]. 环境保护, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm

    MAO Z, CHEN H, SUN R J, et al. Analysis of marine carbon sink in China: current situation, problems and suggestions[J]. Environmental Protection, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm
    [74] 刘天奇, 胡权义, 汤计超, 等. 长江中下游水稻生产固碳减排关键影响因素及技术体系[J]. 中国生态农业学报, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm

    LIU T Q, HU Q Y, TANG J C, et al. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm
  • 加载中
图(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回