留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaAl0.5Ni0.5O3钙钛矿的制备及其对甲烷干重整的催化性能

马于杰 葛以赵 苏鹏 王自军 李永生

马于杰, 葛以赵, 苏鹏, 王自军, 李永生. LaAl0.5Ni0.5O3钙钛矿的制备及其对甲烷干重整的催化性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045
引用本文: 马于杰, 葛以赵, 苏鹏, 王自军, 李永生. LaAl0.5Ni0.5O3钙钛矿的制备及其对甲烷干重整的催化性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045
MA Yujie, GE Yizhao, SU Peng, WANG Zijun, LI Yongsheng. The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045
Citation: MA Yujie, GE Yizhao, SU Peng, WANG Zijun, LI Yongsheng. The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 53-61. doi: 10.6054/j.jscnun.2022045

LaAl0.5Ni0.5O3钙钛矿的制备及其对甲烷干重整的催化性能

doi: 10.6054/j.jscnun.2022045
基金项目: 

国家自然科学基金项目 21566031

国家自然科学基金项目 21766029

详细信息
    通讯作者:

    王自军,Email: wzj.tea@shzu.edu.cn

  • 中图分类号: O643.3

The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming

  • 摘要: 采用硬模板法制备比表面积大的介孔LaAl1-xNixO3钙钛矿催化剂,将其用于碳中和甲烷干重整领域,研究不同温度下的反应活性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、热重分析(TGA)对制备的催化剂进行表征。结果表明:LaAl0.5Ni0.5O3催化剂在反应过程中表现出了最优异的活性与稳定性。在反应温度为750 ℃,空速GHSV=36 000 mL/(g·h)的反应条件下, CH4与CO2的转化率分别达到69.8%和81.5%,经25 h稳定性测试后CH4与CO2的转化率仅分别降低2.7%和3.3%。这是由于在H2-Ar混合气还原过程中,LaAl0.5Ni0.5O3催化剂获得了比LaAl0.7Ni0.3O3催化剂更多的Ni活性位点,同时获得了比LaAl0.3Ni0.7O3催化剂更优异的抗烧结、抗积碳性能。
  • 图  1  LaAl1-xNixO3钙钛矿催化剂的合成路线

    Figure  1.  The route of LaAl1-xNixO3 perovskite catalyst synthesis

    图  2  新制的LaAlO3-C与LaAlO3钙钛矿SEM图

    Figure  2.  The SEM images of LaAlO3-C and LaAlO3 perovskite prepared

    图  3  所有新制钙钛矿的N2吸附-脱附等温图

    Figure  3.  The N2 adsorption-desorption isotherms of all perov-skites prepared

    图  4  新制钙钛矿和还原后LaAl1-xNixO3钙钛矿的XRD图谱

    Figure  4.  The XRD patterns of the as-prepared and reduced LaAl1-xNixO3 perovskites

    图  5  新制LaAl1-xNixO3催化剂的H2-TPR曲线

    Figure  5.  The H2-TPR curves of LaAl1-xNixO3 catalysts prepared

    图  6  不同温度下催化剂对CH4和CO2的催化活性

    Figure  6.  The catalytic activity of each catalyst for CH4 and CO2 at different temperatures

    图  7  LaAl1-xNixO3催化剂的稳定性

    Figure  7.  The stability of LaAl1-xNixO3 catalysts

    图  8  催化剂在稳定性测试反应前后的TEM图、XRD图谱及TG曲线

    Figure  8.  The TEM images, XRD patterns and TG curves of the catalysts before and after stability test

    表  1  不同样品的物理性质

    Table  1.   The physical characteristics of different samples

    样品 比表面积/(m2·g-1) 孔容积/(cm3·g-1) 孔径/nm D0/nm D1/nm
    LaAlO3-C 5.3 0.041 30.5
    LaAlO3 137.1 0.274 8.0
    LaAl0.7Ni0.3O3 98.3 0.288 11.7 13.5
    LaAl0.5Ni0.5O3 93.7 0.251 10.7 14.2 15.5
    LaAl0.3Ni0.7O3 85.6 0.223 10.4 17.8 21.6
    注:D0为LaAl1-xNixO3钙钛矿还原后的Ni粒径; D1为LaAl1-xNixO3钙钛矿稳定性测试后的Ni粒径。
    下载: 导出CSV

    表  2  LaAl0.5Ni0.5O3催化剂与各种同类催化剂的性能比较

    Table  2.   The performance of various catalysts for methane dry reforming

    样品 气体组分 GHSV/(mL·g-1·h-1) T/℃ 转化率/% t/h 来源
    CH4 CO2
    La(Co0.1Ni0.9)0.5Fe0.5O3 V(CH4)∶V(CO2)=1∶1 12 000 750 70 80 30 [25]
    La0.4Ce0.6Ni0.5O0.5O3 V(CH4)∶V(CO2)=1∶1 12 000 750 62 72 25 [26]
    10%NiO/MgO V(CH4)∶V(CO2)=1∶1 30 000 750 63 75 30 [27]
    Ni-ATP@Ce V(CH4)∶V(CO2)=1∶1 18 000 700 58 74 6 [28]
    LaAl0.5Ni0.5O3 V(CH4)∶V(CO2)∶V(N2)=25∶25∶10 36 000 750 69 81 25 本文
    注:空速(GHSV): 反应气体每小时通过每克催化剂的体积。
    下载: 导出CSV
  • [1] 李风雷, 尹璐, 赵吉, 等. 以能源转型推进"碳中和"的北欧经验借鉴与中国方案初探[J]. 可再生能源, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005

    LI F L, YIN L, ZHAO J, et al. The nordic experiences and Chinese choices for improving "Carbon Neutrality" by energy transition[J]. Renewable Energy Resources, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005
    [2] 卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
    [3] SINGH R, DHIR A, MOHAPATRA S, et al. Dry reforming of methane using various catalysts in the process: review[J]. Biomass Convers and Biorefinery, 2020, 10(2): 567-587. doi: 10.1007/s13399-019-00417-1
    [4] MOREIRA T, FILHO J, CARVALHO Y, et al. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane[J]. Fuel, 2021, 287: 119536/1-10. https://www.sciencedirect.com/science/article/pii/S0016236120325321
    [5] ANIL C, MODAK J M, MADRAS G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst[J]. Molecular Catalysis, 2019, 484: 110805/1-11. https://www.sciencedirect.com/science/article/pii/S1226086X13002190
    [6] PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. doi: 10.1016/j.ijhydene.2020.04.066
    [7] QIN Z Z, CHEN J, XIE X L, et al. CO2 reforming of CH4 to syngas over nickel-based catalysts[J]. Environmental Chemistry Letters, 2020, 18(4): 997-1017. doi: 10.1007/s10311-020-00996-w
    [8] BHATTAR S, ABEDIN M A, KANITKAR S, et al. A review on dry reforming of methane over perovskite derived catalysts[J]. Catalysis Today, 2021, 365: 2-23. doi: 10.1016/j.cattod.2020.10.041
    [9] RUAN Y Z, ZHAO Y F, LU Y, et al. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous and Mesoporous Materials, 2020, 303: 110278/1-43.
    [10] RIVAS I, ALVAREZ J, PIETRI E, et al. Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host[J]. Catalysis Today, 2009, 149 (3): 388-393. https://www.sciencedirect.com/science/article/pii/S0920586109003459
    [11] NAIR M M, KALIAGUINE S, KLEITZ F, et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts[J]. ACS Catalysis, 2014, 4 (11): 3837-3846. doi: 10.1021/cs500918c
    [12] SONG J W, DUAN X H, ZHANG W W. Methane dry reforming over mesoporous La2O3 supported Ni catalyst for syngas production[J]. Microporous and Mesoporous Materials, 2021, 310: 110587/1-8.
    [13] BAI X L, XIE G M, GUO Y, et al. A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane[J]. Catalysis Today, 2021, 368: 78-85. doi: 10.1016/j.cattod.2019.12.033
    [14] LEE G, KIM I, YANG I, et al. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Applied Surface Science, 2018, 429: 55-61. doi: 10.1016/j.apsusc.2017.08.092
    [15] WANG Z J, WANG H, LIU Y, et al. La1-xCaxFe1-xCoxO3, a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen[J]. RSC Advances, 2013, 3(25): 10027-10036. doi: 10.1039/c3ra23487h
    [16] WANG N, YU X P, WANG Y, et al. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier[J]. Catalysis Today, 2013, 212: 98-107. doi: 10.1016/j.cattod.2012.07.022
    [17] LU Y, GUO D, RUAN Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 190-199. doi: 10.1016/j.jcou.2018.01.003
    [18] SAGAR T V, PADMAKAR D, LINGAIAH N, et al. Syngas production by CO2 reforming of methane on LaNixAl1-xO3 perovskite catalysts: influence of method of preparation[J]. Journal of Chemical Sciences, 2017, 129 (11): 1787-1794. doi: 10.1007/s12039-017-1359-2
    [19] WANG N, SHEN K, HUANG L, et al. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. ACS Catalysis, 2013, 3 (7): 1638-1651. doi: 10.1021/cs4003113
    [20] TAHERIAN Z, KHATAEE A, OROOJI Y. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters[J]. Journal of the Energy Institute, 2021, 97, 100-108. doi: 10.1016/j.joei.2021.04.005
    [21] CHEN C F, MENG Z J, WANG Z J. Large specific surface area macroporous nanocast LaFe1-xNixO3: a stable catalyst for catalytic methane dry reforming[J]. Journal of Chemistry, 2019, 2019: 1-9. https://www.hindawi.com/journals/jchem/2019/7851416/
    [22] Li Z W, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c8cy00024g#!
    [23] ZHANG Q, SUN M, NING P, et al. Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane[J]. Applied Surface Science, 2019, 469: 368-377. doi: 10.1016/j.apsusc.2018.10.222
    [24] CHEN X, YIN L, LONG K, et al. The reconstruction of Ni particles on SBA-15 by thermal activation for dry reforming of methane with excellent resistant to carbon deposition[J]. Journal of the Energy Institute, 2020, 93(6): 2255-2263. doi: 10.1016/j.joei.2020.06.008
    [25] WANG H Q, DONG X L, ZHAO T T, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(CoxNi1-x)0.5Fe0.5O3 perovskite precursor: catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. doi: 10.1016/j.apcatb.2018.12.072
    [26] WANG M, ZHAO T T, DONG X L, et al. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2018, 224: 214-221. doi: 10.1016/j.apcatb.2017.10.022
    [27] JAFARBEGLOO M, TARLANI A, MESBATH W A, et al. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1165-1173. doi: 10.1016/j.jngse.2015.09.065
    [28] DAI H, YU P X, LIU H S, et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction[J]. New Journal of Chemistry, 2020, 44 (37): 16101-16109. doi: 10.1039/D0NJ03069D
    [29] LI L, ZHANG L M, SHI X F, et al. Carbon dioxide reforming of methane over nickel catalysts supported on mesoporous MgO[J]. Journal of Porous Materials, 2014, 21(2): 217-224. doi: 10.1007/s10934-013-9766-3
    [30] ZHANG Q L, WANG J, NING P, et al. Dry reforming of methane over Ni/SBA-15 catalysts prepared by homogeneous precipitation method[J]. Korean Journal of Chemical Engineering, 2017, 34 (11): 2823-2831. doi: 10.1007/s11814-017-0182-2
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回