留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V2O5/ZrO2-Al2O3催化甲醇选择性氧化合成二甲氧基甲烷

张丹 尚润梅 赵振涛 李君华 邢锦娟

张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V2O5/ZrO2-Al2O3催化甲醇选择性氧化合成二甲氧基甲烷[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 62-71. doi: 10.6054/j.jscnun.2022044
引用本文: 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V2O5/ZrO2-Al2O3催化甲醇选择性氧化合成二甲氧基甲烷[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 62-71. doi: 10.6054/j.jscnun.2022044
ZHANG Dan, SHANG Runmei, ZHAO Zhentao, LI Junhua, XING Jinjuan. The Synthesis of Dimethoxymethane through Selective Oxidation of Methanol with V2O5/ZrO2-Al2O3 Catalysts[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 62-71. doi: 10.6054/j.jscnun.2022044
Citation: ZHANG Dan, SHANG Runmei, ZHAO Zhentao, LI Junhua, XING Jinjuan. The Synthesis of Dimethoxymethane through Selective Oxidation of Methanol with V2O5/ZrO2-Al2O3 Catalysts[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 62-71. doi: 10.6054/j.jscnun.2022044

V2O5/ZrO2-Al2O3催化甲醇选择性氧化合成二甲氧基甲烷

doi: 10.6054/j.jscnun.2022044
基金项目: 

国家自然科学基金项目 21606117

辽宁省高等学校创新团队项目 2018-479-14

辽宁省高等学校创新团队项目 LT2015001

详细信息
    通讯作者:

    李君华,Email: lijunhua0521@163.com

  • 中图分类号: O643.3

The Synthesis of Dimethoxymethane through Selective Oxidation of Methanol with V2O5/ZrO2-Al2O3 Catalysts

  • 摘要: 采用浸渍法制备了V2O5质量分数不同的V2O5/Al2O3催化剂,采用Zr对Al2O3载体进行改性并应用于催化甲醇选择性氧化制备二甲氧基甲烷(DMM)的反应中。经X-射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)表征分析,结果表明:与单一Al2O3负载的钒基催化剂相比,Zr改性提高了钒氧化物的分散性与稳定性,加强了催化剂中各组分间的相互作用,有效调变了催化剂的酸性和氧化性,进而提高了DMM的选择性。考察了反应条件对甲醇选择性氧化制备DMM的影响,最佳反应温度为175 ℃,经20%V2O5/12%ZrO2-Al2O3催化氧化,甲醇转化率为27.9%,DMM选择性为99.9%。
  • 图  1  催化剂的制备流程

    Figure  1.  The process of the catalyst preparation

    图  2  不同催化剂的XRD图谱

    Figure  2.  The XRD patterns of different catalysts

    图  3  不同催化剂的SEM图和EDS图

    Figure  3.  The SEM and EDS images of different catalysts

    图  4  20%V2O5/yZrO2-Al2O3的UV-Vis谱

    Figure  4.  The UV-Vis spectra of 20%V2O5/yZrO2-Al2O3

    图  5  20%V2O5/yZrO2-Al2O3的FTIR谱

    Figure  5.  The FTIR spectra of 20%V2O5/yZrO2-Al2O3

    图  6  20%V2O5/yZrO2-Al2O3的Raman谱

    Figure  6.  The Raman spectra of 20%V2O5/yZrO2-Al2O3

    图  7  催化剂的N2吸附脱附等温线和孔径分布

    Figure  7.  The nitrogen adsorption isotherms and pore width distribution of the catalysts

    图  8  20%V2O5/yZrO2-Al2O3的H2-TPR和NH3-TPD曲线

    Figure  8.  The H2-TPR and NH3-TPD curves of 20%V2O5/yZrO2-Al2O3

    图  9  不同催化剂上反应时间对甲醇转化率和DMM选择性的影响

    注:t=175 ℃;WHSV=2.37 h-1V(O2)/V(N2)=1/4;p=0.01 MPa。

    Figure  9.  The effect of reaction time on the methanol oxidation with the catalysts

    图  10  20%V2O5/12%ZrO2-Al2O3催化剂上反应温度对甲醇转化率和DMM选择性的影响

    Figure  10.  The influence of reaction temperature on the methanol oxidation over 20%V2O5/12%ZrO2-Al2O3 catalyst

    图  11  20%V2O5/12%ZrO2-Al2O3催化剂的循环使用性能

    Figure  11.  The reusability of the 20%V2O5/12%ZrO2-Al2O3 catalyst

    图  12  5次循环使用前后20%V2O5/12%ZrO2-Al2O3催化剂的XRD图谱

    Figure  12.  The XRD patterns before and after 5-cycle-reaction for the 20%V2O5/12%ZrO2-Al2O3 catalyst

    表  1  催化剂的比表面积和孔结构数据

    Table  1.   The specific surface area and porosity data of the catalysts

    催化剂 比表面积/(m2·g-1) 孔容积/(cm3·g-1) 平均孔径/nm
    总孔 微孔
    20%V2O5/Al2O3 145 0.21 0.08 3.0
    20%V2O5/4%ZrO2-Al2O3 133 0.22 0.06 5.1
    20%V2O5/8%ZrO2-Al2O3 125 0.28 0.03 6.9
    20%V2O5/12%ZrO2-Al2O3 123 0.32 0.02 7.3
    20%V2O5/16%ZrO2-Al2O3 119 0.30 0.02 7.2
    20%V2O5/20%ZrO2-Al2O3 110 0.31 0.02 7.3
    下载: 导出CSV
  • [1] 刘焕君, 高腾飞, 施达, 等. 甲醇一步催化转化制甲缩醛和甲酸甲酯的双功能催化剂[J]. 化学进展, 2016, 28(6): 942-953. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201606015.htm

    LIU H J, GAO T F, SHI D, et al. Bifunctional catalysts of methanol catalytic conversion to dimethoxymethane and methyl formate[J]. Progress in Chemistry, 2016, 28(6): 942-953. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201606015.htm
    [2] YUAN M, CHE Y, TANG R, et al. One-step synthesis of methylal via methanol oxidation by Mo: Fe(x)/HZSM-5 bifunctional catalyst[J]. Fuel, 2020, 261: 116416/1-9. https://pubs.rsc.org/en/content/articlelanding/2018/nj/c7nj03593d
    [3] ZHAO H, BENNICI S, SHEN J, et al. Influence of the host oxide of sulfated-titania catalysts on partial oxidation methanol reaction[J]. Applied Catalysis A: General, 2010, 385(1/2): 224-231. https://www.sciencedirect.com/science/article/pii/S0926860X10005028
    [4] 吴刚强, 郎中敏, 王亚雄, 等. 沉淀法ZrO2-Al2O3复合载体的制备及其甲烷化催化性能初探[J]. 现代化工, 2020, 40(2): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202002026.htm

    WU G Q, LANG Z M, WANG Y X, et al. Preparation of ZrO2-Al2O3 composite support by precipitation method and its methanation catalytic performance[J]. Modern Chemical Industry, 2020, 40(2): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202002026.htm
    [5] 廉海昆, 龙慧敏. 甲缩醛生产技术和应用进展[J]. 天然气化工(C1化学与化工), 2012, 37(5): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201205020.htm

    LIAN H K, LONG H M. Production technologies and application of dimethoxymethane[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering), 2012, 37(5): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201205020.htm
    [6] THAVORNPRASERT K, CAPRON M, JALOWIECKIDUHAMEL L, et al. Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1, 1-dimethoxymethane from methanol[J]. Applied Catalysis B: Environmental, 2014, 145: 126-135. doi: 10.1016/j.apcatb.2013.01.043
    [7] NIKONOVA O A, CAPRON M, FANG G, et al. Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM[J]. Catalysis, 2011, 279(2): 310-318. doi: 10.1016/j.jcat.2011.01.028
    [8] WANG T, MENG Y, LIANG Z, et al. Selective oxidation of methanol to dimethoxymethane over V2O5/TiO2-Al2O3 catalysts[J]. Science Bulletin, 2015, 60(11): 1009-1018. doi: 10.1007/s11434-015-0782-3
    [9] 程金燮, 王科, 胡志彪, 等. 甲醇定向转化制二甲氧基甲烷催化剂研究进展[J]. 天然气化工(C1化学与化工), 2018, 43(3): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201803025.htm

    CHENG J X, WANG K, HU Z B, et al. Research progress in catalysts for direct conversion of methanol to dimethoxymethane[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering), 2018, 43(3): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201803025.htm
    [10] LI M, LONG Y, DENG Z, et al. Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant[J]. Catalysis Communications, 2015, 68: 46-48. doi: 10.1016/j.catcom.2015.04.031
    [11] ZHAO H, BENNICI S, SHEN J, et al. Nature of surface sites of V2O5-TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane[J]. Catalysis, 2010, 272(1): 176-189. doi: 10.1016/j.jcat.2010.02.028
    [12] LI N, WANG S, SUN Y, et al. First principles studies on the selectivity of dimethoxymethane and methyl formate in methanol oxidation over V2O5/TiO2 based catalysts[J]. Physical Chemistry Chemical Physics, 2017, 19(29): 19393-19406. doi: 10.1039/C7CP02326J
    [13] FAN Z, GUO H, FANG K, et al. Efficient V2O5/TiO2 composite catalysts for dimethoxymethane synthesis from methanol selective oxidation[J]. RSC Advances, 2015, 5(31): 24795-24802. doi: 10.1039/C4RA16727A
    [14] GORNAY J, SECORDEL X, CAPRON M, et al. Direct synthesis of 1, 1-dimethoxymethane from methanol by minor modification of the formaldehyde production process over FeMo catalysts[J]. Oil and Gas Science and Technology, 2010, 65(5): 751-762. doi: 10.2516/ogst/2009087
    [15] 李君华, 张丹. 盐酸改性V2O5/TiO2及其催化甲醇选择性氧化的研究[J]. 功能材料, 2015, 46(20): 20012-20015, 20019. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201520003.htm

    LI J H, ZHANG D. Selective oxidation of methanol to dimethoxymethane over HCl modified V2O5/TiO2[J]. Functional Materials, 2015, 46(20): 20012-20015, 20019. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201520003.htm
    [16] 黄惠阳, 申科, 袁颖, 等. 球形γ-Al2O3载体制备方法评述[J]. 当代化工, 2021, 50(4): 976-979. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202104060.htm

    HUANG H Y, SHENG K, YUAN Y, et al. Summary on preparation of spherical γ-Al2O3 carrier[J]. Contemporary Chemical Industry, 2021, 50(4): 976-979. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH202104060.htm
    [17] TAO M, WANG H, LU B L, et al. Highly selective oxidation of methanol to dimethoxymethane over SO42-/V2O5-ZrO2[J]. Chemistry, 2017, 41(16): 8370-8376. https://pubs.rsc.org/en/Content/ArticleLanding/NJ/2017/C7NJ01295K
    [18] 武建兵, 张晓艳, 孙泽平, 等. NaOH含量对HZSM-5分子筛性质及其催化甲缩醛气相羰基化性能的影响[J]. 燃料化学学报, 2019, 47(10): 1226-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201910009.htm

    WU J B, ZHANG X Y, SUN Z P, et al. Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane[J]. Fuel Chemistry and Technology, 2019, 47(10): 1226-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201910009.htm
    [19] 张鹏, 吴宏海, 魏燕富, 等. Fe/S耦合催化剂的合成及其芬顿催化性能[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202101008.htm

    ZHANG P, WU H H, WEI Y F, et al. The synthesis and fenton catalytic performance of the Fe/S coupling catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202101008.htm
    [20] 陈文龙, 刘海超. 甲醇选择氧化金属氧化物催化剂的结构与其催化性能的关系[J]. 物理化学学报, 2012, 28(10): 2315-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201210014.htm

    CHEN W L, LIU H C. Relationship between the structures of metal oxide catalysts and there properties in selective oxidation of methanol[J]. Acta Physico-Chimica Sinica, 2012, 28(10): 2315-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201210014.htm
    [21] LU X, QIN Z, DONG M, et al. Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts[J]. Fuel, 2011, 90(4): 1335-1339. https://www.sciencedirect.com/science/article/pii/S0016236111000093
    [22] IORDANOVA R, DIMITRIEV Y, DIMITROV V. Structure of V2O5-MoO3-Fe2O3 glasses[J]. Non-crystalline Solids, 1994, 167(1/2): 74-80.
    [23] YANG S, IGLESIA E, BELL A T. Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3 structural characterization and catalytic function[J]. Physical Chemistry B, 2005, 109(18): 8987-9000. https://acs.figshare.com/articles/journal_contribution/Oxidative_Dehydrogenation_of_Propane_over_V_sub_2_sub_O_sub_5_sub_MoO_sub_3_sub_Al_sub_2_sub_O_sub_3_sub_and_V_sub_2_sub_O_sub_5_sub_Cr_sub_2_sub_O_sub_3_sub_Al_sub_2_sub_O_sub_3_sub_Structural_Characterization_and_Catalytic_Function/3286660/1
    [24] GAO X, JIANG J, WACHS I E. In situ UV-Vis-NIR diffuse reflectance and Raman spectroscopic studies of propane oxidation over ZrO2-supported vanadium oxide catalysts[J]. Catalysis, 2002, 209(1): 43-50. https://www.sciencedirect.com/science/article/pii/S0021951702936353
    [25] 王玉春, 刘赵荣, 谭超, 等. 载体晶粒尺寸对CuY催化剂性能的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202004005.htm

    WANG Y C, LIU Z R, TAN C, et al. The effect of the support grain size on the catalytic performance of the CuY catalyste[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202004005.htm
    [26] 丁晓墅, 李乃华, 王淑芳, 等. 甲醇为原料联合制备碳酸二甲酯、甲缩醛和二甲醚反应体系热力学计算及节能分析[J]. 化工学报, 2015, 66(7): 2377-2386. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507003.htm

    DING X S, LI N H, WANG S F, et al. Thermodynamic calculation and energy saving analysis of combined reaction system for production of dimethyl carbonate, methylal and dimethyl ether from methanol[J]. Chemical Engineering, 2015, 66(7): 2377-2386. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507003.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回