The Progress in the Research on Optimizing CO2 Capture Performance of CaO/CuO Composites
-
摘要: 开发高效、低成本的CO2捕集技术是我国实现“碳达峰、碳中和”目标的重要途径。基于钙铜复合吸收剂的钙循环耦合化学链燃烧工艺是一种改进的钙循环技术,通过耦合化学链燃烧来替代钙循环技术中高能耗的空气分离器,可显著降低系统能耗、提高其经济性,受到了国内外学者的广泛关注。介绍了钙循环耦合化学链燃烧工艺的基本原理,阐述了目前钙循环耦合化学链燃烧工艺面临的重大挑战——钙铜复合吸收剂CO2捕集性能在循环过程中的急剧衰减;综述了提高钙铜复合吸收剂CO2捕集性能的改性措施,主要包括载体负载法、水蒸气活化、高温热预处理等;综合分析了各种改性方法的优缺点并指明了今后的研究方向。Abstract: The development of efficient and low-cost CO2 capture technology is an important approach for China to achieve the goal of "carbon peak and carbon neutrality". The process of calcium looping integrated with chemical looping combustion based on CaO/CuO composites is a modified calcium looping process. In such a process, chemical looping combustion is coupled to substitute the energy-intensive air separation unit commonly used in the calcium looping, thus significantly reducing the system's energy consumption and improving the economy. The calcium looping integrated with chemical looping combustion process has attracted great attention worldwide. The basic principle of the calcium looping integrated with chemical looping combustion process is introduced, and the major challenge that the process faces is described, i.e., a rapid decline in CO2 capture performance of CaO/CuO composites during cycling operations. Moreover, the modification methods to enhance the CO2 capture performance of CaO/CuO composites are reviewed, mainly including the incorporation of stabilizer, steam activation and high-temperature thermal pretreatment. Finally, the advantages and disadvantages of various modification methods are analyzed comprehensively, and the direction to future research is discussed.
-
Key words:
- CO2 capture /
- calcium looping /
- chemical looping combustion /
- sorbent /
- sintering /
- modification
-
表 1 不同改性方法下钙铜复合吸收剂的CO2捕集性能
Table 1. The CO2 capture performance of CaO/CuO composite sorbent using different modification approaches
改性方法 反应器 反应条件a 循环次数 CO2吸附率 文献 首次 末次 载体负载法(MgO/Al2O3)和结构改性(核壳结构) 热重分析仪 煅烧/还原:750 ℃,15%CH4,8 min
碳酸化:750 ℃,15%CO2,10 min30 0.05 0.08 [12] 载体负载法(水泥) 热重分析仪 煅烧/还原:875 ℃,CH4,10 min
碳酸化:650 ℃,20%CO2,15 min16 0.06 0.02 [15] 载体负载法(MgO) 热重分析仪 煅烧/还原:750 ℃,10%CH4,20 min
碳酸化:750 ℃,40%CO2,40 min15 0.15 0.10 [13] 载体负载法(MgO) 热重分析仪 煅烧/还原:800 ℃,15%CH4,10 min
碳酸化:650 ℃,15%CO2,10 min4 0.26 0.20 [14] 载体负载法(MgO) 热重分析仪 煅烧/还原:950 ℃,15%CH4,10 min
碳酸化:750 ℃,15%CO2,10 min4 0.11 0.09 [14] 载体负载法(Al2O3) 热重分析仪 煅烧/还原:850 ℃,10%CH4,10 min
碳酸化:750 ℃,15%CO2,30 min35 0.18 0.11 [11] 载体负载法(Al2O3)和水蒸气活化(全过程通入水蒸气) 热重分析仪 煅烧/还原:850 ℃,10%CH4,2%H2O,10 min
碳酸化:750 ℃,15%CO2,2%H2O,30 min10 0.18 0.16 [11] 载体负载法(MgO)和水蒸气活化(全过程通入水蒸气) 热重分析仪 煅烧/还原:750 ℃,15%CH4,13.6%H2O,10 min
碳酸化:750 ℃,15%CO2,13.6%H2O,10 min10 0.08 0.075 [28] 载体负载法(MgO)和水蒸气活化(仅碳酸化反应通入水蒸气) 热重分析仪 煅烧/还原:750 ℃,15%CH4,10 min
碳酸化:750 ℃,15%CO2,13.6%H2O,10 min10 0.08 0.068 [28] 载体负载法(MgO)和高温热预处理 热重分析仪 煅烧/还原:750 ℃,15%CH4,10 min
碳酸化:750 ℃,15%CO2,10 min40 0.07 0.05 [28] 载体负载法(水泥)和高温热预处理 热重分析仪 煅烧:650~875 ℃升温,N2,22.5 min
还原:875 ℃,CH4,10 min
碳酸化:650 ℃,20%CO2,15 min15 0.02 0.01 [15] 载体负载法(水泥)和水蒸气活化(仅碳酸化反应通入水蒸气) 热重分析仪 煅烧:650~875 ℃升温,N2,22.5 min
还原:875 ℃,CH4,10 min
碳酸化:650 ℃,20%CO2,10%水蒸气,15 min10 0.10 0.06 [15] 结构改性(纳米结构) 热重分析仪 煅烧/还原:650~800 ℃升温,15%CH4,15 min
碳酸化:650 ℃,15%CO2,30 min40 0.11 0.17 [26] 结构改性(核壳结构) 固定床反应器 煅烧/还原:850 ℃,66.5% H2,15 min
碳酸化:650 ℃,15%CO2,15 min12 0.11 0.07 [29] 结构改性(中空微球结构) 固定床反应器 煅烧/还原:850 ℃,20%CH4,10 min
碳酸化:650 ℃,15%CO2,5 min20 0.21 0.15 [27] 结构改性(中空微球结构) 固定床反应器 煅烧/还原:940 ℃,20%CH4(CO2作为平衡气),10 min
碳酸化:650 ℃,15%CO2,5 min10 0.19 0.12 [27] 结构改性(纳米结构) 固定床反应器 煅烧/还原:800~850 ℃升温并保温10 min,1%CH4,15 min
碳酸化:650 ℃,15%CO2,10 min19 0.13 0.10 [30] 注:CO2吸附率为吸附的CO2质量与吸附剂质量之比;a表示无特别说明,都选用N2作为平衡气。 表 2 普遍使用的载体的塔曼温度
Table 2. The Tammann temperatures of commonly used stabilizers
物质 塔曼温度/℃ 文献 物质 塔曼温度/℃ 文献 Al2O3 900 [31] MgO 1 276 [32] Ca3Al2O6 771 [32] Y2O3 1 083 [33] Ca12Al14O33 725 [31] CeO2 1 064 [34] TiO2 785 [31] Nd2O3 1 049 [35] CaTiO3 851 [31] Yb2O3 1 094 [36] SiO2 664 [31] La2O3 1 021 [37] Ca2SiO4 929 [38] WO3 600 [37] ZrO2 1 221 [31] HfO2 1 250 [37] CaZrO3 1 036 [31] -
[1] BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. https://research.monash.edu/en/publications/carbon-capture-and-storage-ccs-the-way-forward [2] MA X, LI Y, YAN X, et al. Preparation of a morph-gene-tic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chemical Engineering Journal, 2019, 361: 235-244. doi: 10.1016/j.cej.2018.12.061 [3] 卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htmLU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm [4] 卢金凯, 张梦, 初秉宪, 等. 环状碳酸酯的固载型离子液体催化合成[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htmLU J K, ZHANG M, CHU B X, et al. The synthesis of cyclic carbonate catalyzed by immobilized ionic liquid[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(6): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htm [5] BHOWN A S, FREEMAN B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environmental Science and Technology, 2011, 45(20): 8624-8632. doi: 10.1021/es104291d [6] CHEN J, DUAN L, SUN Z. Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach[J]. Environmental Science and Technology, 2019, 53(4): 2249-2259. doi: 10.1021/acs.est.8b06138 [7] ABANADES J C, MURILLO R, FERNANDEZ J R, et al. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops[J]. Environmental Science and Technology, 2010, 44(17): 6901-6904. doi: 10.1021/es101707t [8] MANOVIC V, ANTHONY E J. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials[J]. Environmental Science and Techno-logy, 2011, 45(24): 10750-10756. doi: 10.1021/es202292c [9] OZCAN D C, MACCHI A, LU D Y, et al. Ca-Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes[J]. International Journal of Greenhouse Gas Control, 2015, 43: 198-212. doi: 10.1016/j.ijggc.2015.10.021 [10] DUHOUX B, MEHRANI P, LU D Y, et al. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis[J]. Energy Technology, 2016, 4(10): 1158-1170. doi: 10.1002/ente.201600024 [11] CHEN J, DONAT F, DUAN L, et al. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process[J]. Chemical Engineering Journal, 2021, 403: 126330/1-12. [12] MA J, MEI D, PENG W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. doi: 10.1016/j.cej.2019.02.188 [13] KIERZKOWSKA A M, MVLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 Sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. doi: 10.1002/cplu.201200232 [14] QIN C, YIN J, LIU W, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial and Engineering Chemistry Research, 2012, 51(38): 12274-12281. [15] RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4: 11/1-12. https://www.mdpi.com/2227-7080/4/2/11 [16] SHIMIZU T, HIRAMA T, HOSODA H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68. doi: 10.1205/026387699525882 [17] STRÖHLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1 MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. doi: 10.1016/j.fuel.2013.12.043 [18] ARIAS B, DIEGO M E, ABANADES J C, et al. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245. doi: 10.1016/j.ijggc.2013.07.014 [19] CHANG M H, CHEN W C, HUANG C M, et al. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia, 2014, 63: 2100-2108. doi: 10.1016/j.egypro.2014.11.226 [20] CHEN J, DUAN L, SUN Z. Review on the development of sorbents for calcium looping[J]. Energy and Fuels, 2020, 34(7): 7806-7836. doi: 10.1021/acs.energyfuels.0c00682 [21] MARTÍNEZ I, ROMANO M C, FERNÁNDEZ J R, et al. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop[J]. Applied Energy, 2014, 114: 192-208. doi: 10.1016/j.apenergy.2013.09.026 [22] FERNÁNDEZ J R, ABANADES J C, MURILLO R, et al. Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. International Journal of Greenhouse Gas Control, 2012, 6: 126-141. doi: 10.1016/j.ijggc.2011.11.014 [23] FERNÁNDEZ J R, MARTÍNEZ I, ABANADES J C, et al. Conceptual design of a Ca-Cu chemical looping process for hydrogen production in integrated steelworks[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11023-11037. doi: 10.1016/j.ijhydene.2017.02.141 [24] MARTÍNEZ I, ARMAROLI D, GAZZANI M, et al. Integration of the Ca-Cu process in ammonia production plants[J]. Industrial and Engineering Chemistry Research, 2017, 56(9): 2526-2539. doi: 10.1021/acs.iecr.6b04615 [25] MARTÍNEZ I, MURILLO R, GRASA G, et al. Integrated combined cycle from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. AIChE Journal, 2013, 59(8): 2780-2794. doi: 10.1002/aic.14054 [26] CHEN J, DUAN L, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. doi: 10.1016/j.cej.2018.06.176 [27] CHEN J, DUAN L, SHI T, et al. A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a template-free synthesis approach[J]. Journal of Materials Chemistry A, 2019, 7(37): 21096-21105. doi: 10.1039/C9TA04513A [28] QIN C, YIN J, LUO C, et al. Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca-Cu chemical looping process[J]. Chemical Engineering Journal, 2013, 228: 75-86. doi: 10.1016/j.cej.2013.04.115 [29] RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209. doi: 10.1016/j.fuel.2015.02.069 [30] CHEN J, SHI T, DUAN L, et al. Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process[J]. Chemical Engineering Journal, 2020, 393: 124716/1-9. [31] ZHAO M, SHI J, ZHONG X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy and Environmental Science, 2014, 7(10): 3291-3295. doi: 10.1039/C4EE01281J [32] SARRIÓN B, PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, et al. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J]. Journal of CO2 Utilization, 2018, 28: 374-384. doi: 10.1016/j.jcou.2018.10.018 [33] ZHANG X, LI Z, PENG Y, et al. Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation[J]. Chemical Engineering Journal, 2014, 243: 297-304. doi: 10.1016/j.cej.2014.01.017 [34] WANG S, FAN S, FAN L, et al. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental Science and Technology, 2015, 49(8): 5021-5027. doi: 10.1021/es5052843 [35] HU Y, LIU W, SUN J, et al. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture[J]. Chemical Engineering Journal, 2015, 273: 333-343. doi: 10.1016/j.cej.2015.03.074 [36] HU Y, LIU W, SUN J, et al. High temperature CO2 capture on novel Yb2O3-supported CaO-based sorbents[J]. Energy and Fuels, 2016, 30(8): 6606-6613. doi: 10.1021/acs.energyfuels.6b01185 [37] KOIRALA R, REDDY G K, SMIRNIOTIS P G. Single Nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy and Fuels, 2012, 26(5): 3103-3109. doi: 10.1021/ef3004015 [38] SU C, DUAN L, DONAT F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210: 117-126. https://www.sciencedirect.com/science/article/pii/S0306261917315507 [39] ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. https://www.sciencedirect.com/science/article/pii/S0306261916310157 [40] MANOVIC V, ANTHONY E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environmental Science and Technology, 2008, 42(11): 4170-4174. [41] ZHANG L, ZHANG B, YANG Z, et al. The role of water on the performance of calcium oxide-based sorbents for carbon dioxide capture: a review[J]. Energy Technology, 2015, 3(1): 10-19. -