留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi/Bi2O3复合碳纳米纤维的制备及其储锂性能研究

徐常蒙 孙洪冉 李海昌 韩晓蕾 王晓君 何燕 刘治明

徐常蒙, 孙洪冉, 李海昌, 韩晓蕾, 王晓君, 何燕, 刘治明. Bi/Bi2O3复合碳纳米纤维的制备及其储锂性能研究[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 34-42. doi: 10.6054/j.jscnun.2022042
引用本文: 徐常蒙, 孙洪冉, 李海昌, 韩晓蕾, 王晓君, 何燕, 刘治明. Bi/Bi2O3复合碳纳米纤维的制备及其储锂性能研究[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 34-42. doi: 10.6054/j.jscnun.2022042
XU Changmeng, SUN Hongran, LI Haichang, HAN Xiaolei, WANG Xiaojun, HE Yan, LIU Zhiming. The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 34-42. doi: 10.6054/j.jscnun.2022042
Citation: XU Changmeng, SUN Hongran, LI Haichang, HAN Xiaolei, WANG Xiaojun, HE Yan, LIU Zhiming. The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 34-42. doi: 10.6054/j.jscnun.2022042

Bi/Bi2O3复合碳纳米纤维的制备及其储锂性能研究

doi: 10.6054/j.jscnun.2022042
基金项目: 

国家自然科学基金项目 21905152

国家自然科学基金项目 52176076

国家自然科学基金项目 22005167

山东省泰山学者项目 ts20190937

山东省自然科学基金项目 ZR2020qb125

中国博士后科学基金项目 2021M693256

中国博士后科学基金项目 2021T140687

详细信息
    通讯作者:

    刘治明, Email: lzmwhhit@hotmail.com

  • 中图分类号: O646.21

The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance

  • 摘要: 为提高Bi负极材料的循环性能,提出了一种Bi/Bi2O3碳纳米复合纤维(Bi/Bi2O3-CNFs)的合成方法。以Bi2S3纳米棒为模板,采用静电纺丝技术及后续高温热处理方法成功合成了具有纵孔结构的Bi/Bi2O3(w)-CNFs。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)、透射电子显微镜(TEM)和X-射线光电子能谱(XPS)对复合材料进行了表征。讨论了不同质量分数的Bi2S3对复合材料结构以及电化学性能的影响。结果表明:当添加8.7%(质量分数)的Bi2S3时,合成的Bi/Bi2O3(8.7%)-CNFs拥有最佳的电化学储锂性能。当充放电电流密度为0.1 A/g时,Bi/Bi2O3(8.7%)-CNFs复合材料首次放电比容量可达到806 mA·h/g,并能稳定循环1 000次,即使在5.0 A/g的大电流密度下,储锂容量仍有147 mA·h/g。Bi/Bi2O3(8.7%)-CNFs复合结构改善了充放电过程的动力学性能,提高了电化学性能。碳纤维及内部纵孔结构缓解了充放电过程中电极材料的体积膨胀,增强了电池的循环稳定性。
  • 图  1  Bi2S3的XRD图谱及SEM图

    Figure  1.  The XRD pattern and SEM image of Bi2S3

    图  2  Bi2S3/PAN(w)-NFs和Bi/Bi2O3(w)-CNFs的SEM图

    Figure  2.  The SEM images of Bi2S3/PAN(w)-NFs and Bi/Bi2O3(w)-CNFs

    图  3  Bi/Bi2O3(8.7%)-CNFs的纵孔结构TEM图

    Figure  3.  The TEM images of longitudinal tunnel structure of Bi/Bi2O3(8.7%)-CNFs

    图  4  不同材料的XRD图谱、TGA曲线及XRD谱

    Figure  4.  The XRD patterns, TGA curves and XPS spectra of different materials

    图  5  Bi/Bi2O3(8.7%)-CNFs的循环伏安和充放电曲线

    Figure  5.  The cycling voltammetry and discharge/charge curves of Bi/Bi2O3(8.7%)-CNFs

    图  6  Bi/Bi2O3(w)-CNFs的倍率性能

    Figure  6.  The rate performance of Bi/Bi2O3(w)-CNFs

    图  7  Bi/Bi2O3(8.7%)-CNFs在0.1 A/g下的循环性能

    Figure  7.  The cycling performance of Bi/Bi2O3(8.7%)-CNFs at 0.1 A/g

    图  8  Bi/Bi2O3(8.7%)-CNFs动力学性能

    Figure  8.  The kinetic properties of Bi/Bi2O3(8.7%)-CNFs

  • [1] LI M, LU J, CHEN Z W, AMINE K. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561/1-24.
    [2] YI T F, SARI H M K, LI X Z, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955/1-31.
    [3] 赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm

    LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm
    [4] 苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
    [5] WANG A N, HONG W W, YANG L, et al. Bi-based electrode materials for alkali metal-ion batteries[J]. Small, 2020, 16(48): 2004022/1-23. https://ro.uow.edu.au/theses/4954/
    [6] WANG X X, WU Y, HUANG P, et al. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage[J]. Nanoscale, 2020, 12(46): 23682-23693. doi: 10.1039/D0NR07230C
    [7] LAO M M, ZHANG Y, LUO W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622/1-23. https://ro.uow.edu.au/aiimpapers/2878/
    [8] BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review[J]. Synthetic Metals, 2020, 271: 116609/1-15.
    [9] CHAI W W, YANG F, YIN W H, et al. Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries[J]. Dalton Transactions, 2019, 48(5): 1906-1914. doi: 10.1039/C8DT04158J
    [10] JIN Y Q, YUAN H C, LAN J L, et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale, 2017, 9(35): 13298-13304. doi: 10.1039/C7NR04912A
    [11] LONG B, QIAO Z P, ZHANG J N, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(18): 11370-11378. doi: 10.1039/C9TA01358J
    [12] LIU T T, ZHAO Y, GAO L J, et al. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage[J]. Scientific Reports, 2015, 5(1): 9307/1-5. https://ui.adsabs.harvard.edu/abs/2015NatSR...5E9307L/abstract
    [13] WANG W Q, XIAO Y, LI X W, et al. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices[J]. Chemical Engineering Journal, 2019, 371: 327-336. doi: 10.1016/j.cej.2019.04.048
    [14] WANG Z Y, ZHOU L, LOU X W. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24(14): 1903-1911. doi: 10.1002/adma.201200469
    [15] SUN J J, ZHENG W Z, LYU S L, et al. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate[J]. Chinese Chemical Letters, 2020, 31(6): 1415-1421. doi: 10.1016/j.cclet.2020.04.031
    [16] 覃小红, 赵从涛, 杨恩龙, 等. 预氧化工艺对静电纺PAN纳米纤维毡结构和性能的影响[J]. 东华大学学报(自然科学版), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002

    QIN X H, ZHAO C T, YANG E L, et al. Effect of the pre-oxidation condition on the structure and property of electrospinning polyacrylonitrile fibers web[J]. Journal of Donghua University (Natural Science), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002
    [17] 刘建华, 张程, 郭胜惠, 等. 聚丙烯腈基碳纤维制备过程中预氧化过程的研究进展[J]. 昆明理工大学学报(自然科学版), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm

    LIU J H, ZHANG C, GUO S H, et al. Advance in pre-oxidation process during the preparation of the polyacrylonitrile-based carbon fibers[J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm
    [18] 何东新, 王成国, 王延相. 聚丙烯腈原丝预氧化过程中的结构与性能变化[J]. 合成纤维工业, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm

    HE D X, WANG C G, WANG Y X. Changes of structure and properties ofpolyacrylonitrile precursors during pre-oxidation[J]. China Synthetic Fiber Industry, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm
    [19] DAI R, WANG Y H, DA P M, et al. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage[J]. Nanoscale, 2014, 6(21): 13236-13241. https://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr04378b#!
    [20] 郑秋生. PAN基碳纤维增强复合材料生产工艺及应用[J]. 化纤与纺织技术, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm

    ZHENG Q S. Production process and application of PAN-based CFRP[J]. Chemical Fiber and Textile Technology, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm
    [21] XIANG J, LIU Z M, SONG T. Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries[J]. Chemistry Select, 2018, 3(31): 8973-8979.
    [22] FANG W, ZHANG N Q, FAN L S, et al. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries[J]. Journal of Power Sources, 2016, 333: 30-36. https://www.sciencedirect.com/science/article/pii/S0378775316313520
    [23] XIONG P X, BAI P X, LI A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries[J]. Advanced Materials, 2019, 31(48): 1904771/1-9. https://www.sciencedirect.com/science/article/pii/S221128551400281X
    [24] YANG H, XU R, YAO Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes[J]. Advanced Functional Materials, 2019, 29(13): 1809195/1-11.
  • 加载中
图(8)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  2
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回