留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能

陈鹏飞 冯杰仪 吴镝

陈鹏飞, 冯杰仪, 吴镝. 高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
引用本文: 陈鹏飞, 冯杰仪, 吴镝. 高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
CHEN Pengfei, FENG Jieyi, WU Di. The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
Citation: CHEN Pengfei, FENG Jieyi, WU Di. The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040

高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能

doi: 10.6054/j.jscnun.2022040
基金项目: 

广东省科技创新战略专项资金项目 PDJH2021b0511

详细信息
    通讯作者:

    陈鹏飞,Email: pfchenwyu@sina.com

  • 中图分类号: O646.5

The Preparation and Performance of Li6.4La3Zr1.4Ta0.6O12-based Lithium Boron Anode for the High Energy Density All-solid-state Lithium Metal Battery

  • 摘要: 采用熔融态金属锂与高纯硼粉复合制备了锂硼复合材料并应用于固态电解质(Li6.4La3Zr1.4Ta0.6O12, LLZTO)制作对称电池,对比研究了锂硼复合固态对称电池与锂金属固态对称电池的电化学性能。结果表明:锂硼复合固态电池界面阻抗(约6 Ω/cm2)小于金属锂固态电池的界面阻抗(约103 Ω/cm2),说明锂硼复合电极和固态电解质接触良好;在400 μA/cm2的电流密度下进行充放电测试,锂硼复合固态对称电池可以稳定循环250次以上,而金属锂固态电池很快失效;锂硼复合固态对称电池在0.1 mAh保持容量下的临界电流密度达到2 700 μA/cm2,在0.1 mA/cm2电流密度下的面容量可达12 mAh/cm2。研究表明该锂硼复合固态对称电池具有优异的循环性能。
  • 图  1  不同材料的SEM图及XRD图谱

    Figure  1.  The SEM images and XRD patterns of different materials

    图  2  对称电池的循环充放电曲线及循环250次后电极的截面SEM图

    Figure  2.  The cyclic charge-discharge curves of symmetric batteries and the SEM image of cross-sectional electrode after 250 cycles

    图  3  2种固态对称电池的电化学交流阻抗以及Li-B|LLZTO|Li-B电池在2种模式下的临界电流密度(CCD)循环曲线

    Figure  3.  The electrochemical impedance spectrum of two solid-state symmetrical batteries and the critical current density (CCD) curves of Li-B|LLZTO|Li-B batteries under two modes

    图  4  Li-B|LLZTO|Li-B的深度放电曲线

    Figure  4.  The deep discharge curve of Li-B|LLZTO|Li-B

  • [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. doi: 10.1038/35104644
    [2] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environmental Science, 2014, 7(2): 513-537. doi: 10.1039/C3EE40795K
    [3] CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Che-mical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [4] AMINE K, KANNO R, TZENG Y. Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS Bulletin, 2014, 39(5): 395-401. doi: 10.1557/mrs.2014.62
    [5] 苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
    [6] CHENG X, ZHAO C, YAO Y, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. doi: 10.1016/j.chempr.2018.12.002
    [7] LOULI A J, ELDESOKY A, WEBER R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy, 2020, 5(9): 693-702. doi: 10.1038/s41560-020-0668-8
    [8] DU M, SUN Y, LIU B, et al. Smartconstruction of an intimate lithium garnet interface for all-solid-state batteries by tuning the tension of molten lithium[J]. Advanced Functional Materials, 2021, 31: 2101556/1-8.
    [9] DUAN J, WU W, NOLAN A M, et al. Lithium-graphite paste: an interface compatible anode for solid-state batte-ries[J]. Advanced Materials, 2019, 31(10): 1807243/1-7.
    [10] WANG M J, CHOUDHURY R, SAKAMOTO J. Characte-rizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density[J]. Joule, 2019, 3(9): 2165-2178. doi: 10.1016/j.joule.2019.06.017
    [11] ZHANG S, WANG D, XU X, et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes[J]. Matter, 2022, 5(4): 1263-1276. doi: 10.1016/j.matt.2022.01.017
    [12] HUANG H, LIU Z, LIANG C, et al. Age softening phenomenon and microscopic mechanism of Li-B alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2491-2501. doi: 10.1016/S1003-6326(20)65395-X
    [13] CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91. doi: 10.1016/j.electacta.2016.12.018
    [14] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111. doi: 10.1038/s41563-019-0438-9
    [15] SUN Y, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 16071/1-12.
    [16] LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4051-4060. doi: 10.1021/acsami.1c20139
    [17] 黄钊文, 李亚军, 肖文平, 等. 锂离子电池核型G@Cu0.85Sn0.15@负极材料的改性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201703006.htm

    HUANG Z W, LI Y J, XIAO W P, et al. Modification of core-shell G@Cu0.85Sn0.15@C anode materials for lithium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201703006.htm
    [18] ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 3826/1-9.
    [19] HUO H, LUO J, THANGADURAI V, et al. Li2CO3: a cri-tical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2019, 5(1): 252-262.
    [20] SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139.
  • 加载中
图(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回